
How do you evaluate $ {\sin ^{ - 1}}\left( 2 \right) $ ?
Answer
443.7k+ views
Hint: In order to find the value of an inverse trigonometric function, we first set up the principal value branch in which the value of the inverse trigonometric function should lie. The principal value branch is basically the chosen range of the inverse function.
For $ {\sin ^{ - 1}} $ function, the principal value branch is $ \left[ { - \dfrac{\pi }{2},\dfrac{\pi }{2}} \right] $ .
For $ {\cos ^{ - 1}} $ function, the principal value branch is $ \left[ {0,\pi } \right] $ .
For $ {\tan ^{ - 1}} $ function, the principal value branch is $ \left( { - \dfrac{\pi }{2},\dfrac{\pi }{2}} \right) $ .
Complete step-by-step answer:
According to definition of inverse ratio,
If the value of x is $ {\sin ^{ - 1}}\left( 2 \right) $ ,
Then, $ \sin x = 2 $ is the trigonometric equation that corresponds to the value of x assumed where the value of x lies in the range $ \left[ { - \dfrac{\pi }{2},\dfrac{\pi }{2}} \right] $ as the principal value branch of $ {\sin ^{ - 1}} $ function is $ \left[ { - \dfrac{\pi }{2},\dfrac{\pi }{2}} \right] $ .
However, we know that the value of the function $ \sin x $ lies between $ - 1 $ and $ 1 $ as the range of the function $ \sin x $ is $ \left[ { - 1,1} \right] $ .
So, $ \sin x = 2 $ is not possible and has no real solution for values of x.
Hence, the value of $ {\sin ^{ - 1}}\left( 2 \right) $ is undefined or there is no real value of function $ {\sin ^{ - 1}}\left( 2 \right) $ .
Note: The basic inverse trigonometric functions are used to find the missing angles in right triangles. While the regular trigonometric functions are used to determine the missing sides of the right-angled triangles. Besides the trigonometric functions and inverse trigonometric functions, we also have some rules related to trigonometry such as the sine rule and cosine rule.
For $ {\sin ^{ - 1}} $ function, the principal value branch is $ \left[ { - \dfrac{\pi }{2},\dfrac{\pi }{2}} \right] $ .
For $ {\cos ^{ - 1}} $ function, the principal value branch is $ \left[ {0,\pi } \right] $ .
For $ {\tan ^{ - 1}} $ function, the principal value branch is $ \left( { - \dfrac{\pi }{2},\dfrac{\pi }{2}} \right) $ .
Complete step-by-step answer:
According to definition of inverse ratio,
If the value of x is $ {\sin ^{ - 1}}\left( 2 \right) $ ,
Then, $ \sin x = 2 $ is the trigonometric equation that corresponds to the value of x assumed where the value of x lies in the range $ \left[ { - \dfrac{\pi }{2},\dfrac{\pi }{2}} \right] $ as the principal value branch of $ {\sin ^{ - 1}} $ function is $ \left[ { - \dfrac{\pi }{2},\dfrac{\pi }{2}} \right] $ .
However, we know that the value of the function $ \sin x $ lies between $ - 1 $ and $ 1 $ as the range of the function $ \sin x $ is $ \left[ { - 1,1} \right] $ .
So, $ \sin x = 2 $ is not possible and has no real solution for values of x.
Hence, the value of $ {\sin ^{ - 1}}\left( 2 \right) $ is undefined or there is no real value of function $ {\sin ^{ - 1}}\left( 2 \right) $ .
Note: The basic inverse trigonometric functions are used to find the missing angles in right triangles. While the regular trigonometric functions are used to determine the missing sides of the right-angled triangles. Besides the trigonometric functions and inverse trigonometric functions, we also have some rules related to trigonometry such as the sine rule and cosine rule.
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

A certain household has consumed 250 units of energy class 11 physics CBSE

The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE

What is the formula mass of the iodine molecule class 11 chemistry CBSE

Trending doubts
Is Cellular respiration an Oxidation or Reduction class 11 chemistry CBSE

In electron dot structure the valence shell electrons class 11 chemistry CBSE

What is the Pitti Island famous for ABird Sanctuary class 11 social science CBSE

State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells
