
How do you evaluate $\sin ( - {175^\circ }) \cdot \tan ({185^\circ }) \cdot \cos ({355^\circ }) + \sin ( - {85^\circ }) \cdot \cos ({365^\circ })$ ?
Answer
532.5k+ views
Hint: In this question, we will use the basic identities of the trigonometric functions to find out the value of the given expression. We will rewrite the terms given in the expression as a sum of degrees by applying the properties of trigonometric function. Then we make use of periodicity of the trigonometric function and simplify the equation. We then substitute back the values to obtain the required solution.
Complete step-by-step solution:
Given an expression of the form $\sin ( - {175^\circ }) \cdot \tan ({185^\circ }) \cdot \cos ({355^\circ }) + \sin ( - {85^\circ }) \cdot \cos ({365^\circ })$
We are asked to evaluate the above expression.
We know that $\sin ( - A) = - \sin A$
Hence the above expression can be written as,
$ \Rightarrow - \sin ({175^\circ }) \cdot \tan ({185^\circ }) \cdot \cos ({355^\circ }) - \sin ({85^\circ }) \cdot \cos ({365^\circ })$
Firstly, we will simplify the given expression by writing the trigonometric functions of the expression in the form of quadrants.
Note that we can write,
$\sin ({175^\circ }) = \sin ({180^\circ } - {5^\circ })$
$\tan ({185^\circ }) = \tan ({180^\circ } + {5^\circ })$
$\cos ({355^\circ }) = \cos ({360^\circ } - {5^\circ })$
$\sin ({85^\circ }) = \sin ({90^\circ } - {5^\circ })$
$\cos ({365^\circ }) = \cos ({360^\circ } + {5^\circ })$
Therefore, we get,
$ \Rightarrow - \sin ({180^\circ } - {5^\circ }) \cdot \tan ({180^\circ } + {5^\circ }) \cdot \cos ({360^\circ } - {5^\circ }) - \sin ({90^\circ } - {5^\circ }) \cdot \cos ({360^\circ } + {5^\circ })$
Also we know that $\sin ({180^\circ } - \theta ) = \sin \theta $ as in the second quadrant sin is positive, $\tan ({180^\circ } + \theta ) = \tan \theta $ as in the third quadrant tan is positive, $\cos ({360^\circ } - \theta ) = \cos \theta $ as in the fourth quadrant cos is positive and $\cos ({360^\circ } + \theta ) = \cos \theta $ in the first quadrant.
Also we know that $\sin ({90^\circ } - \theta ) = \cos \theta $.
Using these results we get,
$ \Rightarrow - \sin ({5^\circ }) \cdot \tan ({5^\circ }) \cdot \cos ({5^\circ }) - \cos ({5^\circ }) \cdot \cos ({5^\circ })$
We know that $\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}$
Hence we get,
$ \Rightarrow - \sin ({5^\circ }) \cdot \dfrac{{\sin ({5^\circ })}}{{\cos ({5^\circ })}} \cdot \cos ({5^\circ }) - {\cos ^2}({5^\circ })$
Simplifying we get,
$ \Rightarrow - \sin ({5^\circ }) \cdot \sin ({5^\circ }) - {\cos ^2}({5^\circ })$
$ \Rightarrow - {\sin ^2}({5^\circ }) - {\cos ^2}({5^\circ })$
Taking minus sign outside we get,
$ \Rightarrow - ({\sin ^2}({5^\circ }) + {\cos ^2}({5^\circ }))$
We know the trigonometric identity, ${\sin ^2}\theta + {\cos ^2}\theta = 1$
Hence we get the final result as,
$ \Rightarrow - 1$
Hence the value of the expression $\sin ( - {175^\circ }) \cdot \tan ({185^\circ }) \cdot \cos ({355^\circ }) + \sin ( - {85^\circ }) \cdot \cos ({365^\circ })$ is $ - 1$.
Note: Students must know the basic properties of trigonometric functions and also in which quadrant which function is positive or negative.
As in the first quadrant all the six trigonometric functions are positive. In the second quadrant only the sine and cosec functions are positive, rest of all are negative. In the third quadrant, only the tan and cot functions are positive and all the other functions are negative. In the fourth quadrant only the cosine and secant are positive.
Complete step-by-step solution:
Given an expression of the form $\sin ( - {175^\circ }) \cdot \tan ({185^\circ }) \cdot \cos ({355^\circ }) + \sin ( - {85^\circ }) \cdot \cos ({365^\circ })$
We are asked to evaluate the above expression.
We know that $\sin ( - A) = - \sin A$
Hence the above expression can be written as,
$ \Rightarrow - \sin ({175^\circ }) \cdot \tan ({185^\circ }) \cdot \cos ({355^\circ }) - \sin ({85^\circ }) \cdot \cos ({365^\circ })$
Firstly, we will simplify the given expression by writing the trigonometric functions of the expression in the form of quadrants.
Note that we can write,
$\sin ({175^\circ }) = \sin ({180^\circ } - {5^\circ })$
$\tan ({185^\circ }) = \tan ({180^\circ } + {5^\circ })$
$\cos ({355^\circ }) = \cos ({360^\circ } - {5^\circ })$
$\sin ({85^\circ }) = \sin ({90^\circ } - {5^\circ })$
$\cos ({365^\circ }) = \cos ({360^\circ } + {5^\circ })$
Therefore, we get,
$ \Rightarrow - \sin ({180^\circ } - {5^\circ }) \cdot \tan ({180^\circ } + {5^\circ }) \cdot \cos ({360^\circ } - {5^\circ }) - \sin ({90^\circ } - {5^\circ }) \cdot \cos ({360^\circ } + {5^\circ })$
Also we know that $\sin ({180^\circ } - \theta ) = \sin \theta $ as in the second quadrant sin is positive, $\tan ({180^\circ } + \theta ) = \tan \theta $ as in the third quadrant tan is positive, $\cos ({360^\circ } - \theta ) = \cos \theta $ as in the fourth quadrant cos is positive and $\cos ({360^\circ } + \theta ) = \cos \theta $ in the first quadrant.
Also we know that $\sin ({90^\circ } - \theta ) = \cos \theta $.
Using these results we get,
$ \Rightarrow - \sin ({5^\circ }) \cdot \tan ({5^\circ }) \cdot \cos ({5^\circ }) - \cos ({5^\circ }) \cdot \cos ({5^\circ })$
We know that $\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}$
Hence we get,
$ \Rightarrow - \sin ({5^\circ }) \cdot \dfrac{{\sin ({5^\circ })}}{{\cos ({5^\circ })}} \cdot \cos ({5^\circ }) - {\cos ^2}({5^\circ })$
Simplifying we get,
$ \Rightarrow - \sin ({5^\circ }) \cdot \sin ({5^\circ }) - {\cos ^2}({5^\circ })$
$ \Rightarrow - {\sin ^2}({5^\circ }) - {\cos ^2}({5^\circ })$
Taking minus sign outside we get,
$ \Rightarrow - ({\sin ^2}({5^\circ }) + {\cos ^2}({5^\circ }))$
We know the trigonometric identity, ${\sin ^2}\theta + {\cos ^2}\theta = 1$
Hence we get the final result as,
$ \Rightarrow - 1$
Hence the value of the expression $\sin ( - {175^\circ }) \cdot \tan ({185^\circ }) \cdot \cos ({355^\circ }) + \sin ( - {85^\circ }) \cdot \cos ({365^\circ })$ is $ - 1$.
Note: Students must know the basic properties of trigonometric functions and also in which quadrant which function is positive or negative.
As in the first quadrant all the six trigonometric functions are positive. In the second quadrant only the sine and cosec functions are positive, rest of all are negative. In the third quadrant, only the tan and cot functions are positive and all the other functions are negative. In the fourth quadrant only the cosine and secant are positive.
Recently Updated Pages
Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

