
How do you evaluate \[\sec \left( {{\tan }^{-1}}8 \right)\] without a calculator?
Answer
489.9k+ views
Hint: We explain the function $\arctan \left( x \right)$. We express the inverse function of tan in the form of $\arctan \left( x \right)={{\tan }^{-1}}x$. We draw the graph of $\arctan \left( x \right)$ and the line $x=8$ to find the intersection point. Thereafter we take the sec ratio of that angle to find the solution. We also use the representation of a right-angle triangle with height and base ratio being 8 and the angle being $\theta $.
Complete step-by-step solution:
The internal part \[{{\tan }^{-1}}8\] of \[\sec \left( {{\tan }^{-1}}8 \right)\] is an angle. We assume \[{{\tan }^{-1}}8=\theta \].
This gives in ratio \[\tan \theta =8\]. We know \[\tan \theta =\dfrac{\text{height}}{\text{base}}\].
We can take the representation of a right-angle triangle with height and base ratio being 8 and the angle being $\theta $. The height and base were considered with respect to that particular angle $\theta $.
In this case we take $AB=x$ and keeping the ratio in mind we have $AC=8x$ as the ratio has to be 8.
Now we apply the Pythagoras’ theorem to find the length of BC. $B{{C}^{2}}=A{{B}^{2}}+A{{C}^{2}}$.
So, $B{{C}^{2}}={{x}^{2}}+{{\left( 8x \right)}^{2}}=65{{x}^{2}}$ which gives $BC=\sqrt{65}x$.
We need to find \[\sec \left( {{\tan }^{-1}}8 \right)\] which is equal to \[\sec \theta \].
This ratio gives \[\sec \theta =\dfrac{\text{hypotenuse}}{\text{base}}\]. So, \[\sec \theta =\dfrac{BC}{AB}=\dfrac{\sqrt{65}x}{x}=\sqrt{65}\].
Therefore, \[\sec \left( {{\tan }^{-1}}8 \right)\] is equal to \[\sqrt{65}\].
Note: We can also apply the trigonometric image form to get the value of \[\sec \left( {{\tan }^{-1}}8 \right)\].
It’s given that \[\tan \theta =8\] and we need to find \[\sec \theta \]. We know $\sec \theta =\sqrt{1+{{\tan }^{2}}\theta }$.
Putting the values, we get $\sec \theta =\sqrt{1+{{\tan }^{2}}\theta }=\sqrt{1+{{8}^{2}}}=\sqrt{65}$.
Complete step-by-step solution:
The internal part \[{{\tan }^{-1}}8\] of \[\sec \left( {{\tan }^{-1}}8 \right)\] is an angle. We assume \[{{\tan }^{-1}}8=\theta \].
This gives in ratio \[\tan \theta =8\]. We know \[\tan \theta =\dfrac{\text{height}}{\text{base}}\].
We can take the representation of a right-angle triangle with height and base ratio being 8 and the angle being $\theta $. The height and base were considered with respect to that particular angle $\theta $.

In this case we take $AB=x$ and keeping the ratio in mind we have $AC=8x$ as the ratio has to be 8.
Now we apply the Pythagoras’ theorem to find the length of BC. $B{{C}^{2}}=A{{B}^{2}}+A{{C}^{2}}$.
So, $B{{C}^{2}}={{x}^{2}}+{{\left( 8x \right)}^{2}}=65{{x}^{2}}$ which gives $BC=\sqrt{65}x$.
We need to find \[\sec \left( {{\tan }^{-1}}8 \right)\] which is equal to \[\sec \theta \].
This ratio gives \[\sec \theta =\dfrac{\text{hypotenuse}}{\text{base}}\]. So, \[\sec \theta =\dfrac{BC}{AB}=\dfrac{\sqrt{65}x}{x}=\sqrt{65}\].
Therefore, \[\sec \left( {{\tan }^{-1}}8 \right)\] is equal to \[\sqrt{65}\].
Note: We can also apply the trigonometric image form to get the value of \[\sec \left( {{\tan }^{-1}}8 \right)\].
It’s given that \[\tan \theta =8\] and we need to find \[\sec \theta \]. We know $\sec \theta =\sqrt{1+{{\tan }^{2}}\theta }$.
Putting the values, we get $\sec \theta =\sqrt{1+{{\tan }^{2}}\theta }=\sqrt{1+{{8}^{2}}}=\sqrt{65}$.
Recently Updated Pages
Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Who discovered the cell and how class 12 biology CBSE

Pomato is a Somatic hybrid b Allopolyploid c Natural class 12 biology CBSE
