
How do you evaluate \[\sec \left( {150^\circ } \right)\]?
Answer
555k+ views
Hint: Here, we will measure the given angle as a difference of two angles to convert it into acute angles using trigonometric identities. We will then simplify the expression and substitute the value of the secant of the obtained angle to find the required value.
Complete step-by-step solution:
First, we will simplify the given trigonometric ratio.
We can rewrite the angle as the sum or difference of a multiple of \[90^\circ \] or \[180^\circ \], and an acute angle.
Rewriting the term of the expression, we get
\[\sec \left( {150^\circ } \right) = \sec \left( {180^\circ - 30^\circ } \right)\]
The secant of an angle \[180^\circ - x\], is equal to the negative of the secant of angle \[x\], where \[x\] is an acute angle.
Therefore, we get
\[\sec \left( {150^\circ } \right) = \sec \left( {180^\circ - 30^\circ } \right) = - \sec 30^\circ \]
The secant of an angle measuring \[30^\circ \] is equal to \[\dfrac{2}{{\sqrt 3 }}\].
Substituting \[\sec 30^\circ = \dfrac{2}{{\sqrt 3 }}\] in the equation \[\sec \left( {150^\circ } \right) = - \sec 30^\circ \], we get
\[ \Rightarrow \sec \left( {150^\circ } \right) = - \dfrac{2}{{\sqrt 3 }}\]
Therefore, we get the value of the expression \[\sec 150^\circ \] as \[ - \dfrac{2}{{\sqrt 3 }}\].
Additional information:
Here, we can make a mistake if we convert \[\sec \left( {150^\circ } \right) = \sec \left( {180^\circ - 30^\circ } \right)\] to \[{\rm{cosec}}30^\circ \]. This is incorrect because \[180^\circ \] is an even multiple of \[90^\circ \]. If we rewrite \[\sec \left( {150^\circ } \right)\] as \[\sec \left( {90^\circ + 60^\circ } \right)\], then only it will become \[{\rm{cosec}}60^\circ \], which is equal to \[\dfrac{2}{{\sqrt 3 }}\]. Here, secant gets converted to cosecant because \[90^\circ \] is an odd multiple of \[90^\circ \].
Note:
We can simplify the value by converting it to cosine.
The secant of an angle is equal to the reciprocal of the cosine of that angle. This can be written as \[\sec x = \dfrac{1}{{\cos x}}\].
Therefore, we can write the given expression as
\[\sec 150^\circ = \dfrac{1}{{\cos 150^\circ }}\]
The cosine of an angle \[180^\circ - x\], is equal to the negative of the cosine of angle \[x\], where \[x\] is an acute angle.
Therefore, we get
\[\cos \left( {150^\circ } \right) = \cos \left( {180^\circ - 30^\circ } \right) = - \cos 30^\circ \]
The cosine of an angle measuring \[30^\circ \] is equal to \[\dfrac{{\sqrt 3 }}{2}\].
Substituting \[\cos 30^\circ = \dfrac{{\sqrt 3 }}{2}\] in the equation \[\cos \left( {150^\circ } \right) = - \cos 30^\circ \], we get
\[ \Rightarrow \cos \left( {150^\circ } \right) = - \dfrac{{\sqrt 3 }}{2}\]
Therefore, we get
\[ \Rightarrow \cos \left( { - 210^\circ } \right) = \cos \left( {150^\circ } \right) = - \dfrac{{\sqrt 3 }}{2}\]
Substituting \[\cos \left( {150^\circ } \right) = - \dfrac{{\sqrt 3 }}{2}\] in the equation \[\sec 150^\circ = \dfrac{1}{{\cos 150^\circ }}\], we get
\[\begin{array}{l} \Rightarrow \sec 150^\circ = \dfrac{1}{{ - \dfrac{{\sqrt 3 }}{2}}}\\ \Rightarrow \sec 150^\circ = - \dfrac{2}{{\sqrt 3 }}\end{array}\]
Therefore, we get the value of the expression \[\sec 150^\circ \] as \[ - \dfrac{2}{{\sqrt 3 }}\].
Complete step-by-step solution:
First, we will simplify the given trigonometric ratio.
We can rewrite the angle as the sum or difference of a multiple of \[90^\circ \] or \[180^\circ \], and an acute angle.
Rewriting the term of the expression, we get
\[\sec \left( {150^\circ } \right) = \sec \left( {180^\circ - 30^\circ } \right)\]
The secant of an angle \[180^\circ - x\], is equal to the negative of the secant of angle \[x\], where \[x\] is an acute angle.
Therefore, we get
\[\sec \left( {150^\circ } \right) = \sec \left( {180^\circ - 30^\circ } \right) = - \sec 30^\circ \]
The secant of an angle measuring \[30^\circ \] is equal to \[\dfrac{2}{{\sqrt 3 }}\].
Substituting \[\sec 30^\circ = \dfrac{2}{{\sqrt 3 }}\] in the equation \[\sec \left( {150^\circ } \right) = - \sec 30^\circ \], we get
\[ \Rightarrow \sec \left( {150^\circ } \right) = - \dfrac{2}{{\sqrt 3 }}\]
Therefore, we get the value of the expression \[\sec 150^\circ \] as \[ - \dfrac{2}{{\sqrt 3 }}\].
Additional information:
Here, we can make a mistake if we convert \[\sec \left( {150^\circ } \right) = \sec \left( {180^\circ - 30^\circ } \right)\] to \[{\rm{cosec}}30^\circ \]. This is incorrect because \[180^\circ \] is an even multiple of \[90^\circ \]. If we rewrite \[\sec \left( {150^\circ } \right)\] as \[\sec \left( {90^\circ + 60^\circ } \right)\], then only it will become \[{\rm{cosec}}60^\circ \], which is equal to \[\dfrac{2}{{\sqrt 3 }}\]. Here, secant gets converted to cosecant because \[90^\circ \] is an odd multiple of \[90^\circ \].
Note:
We can simplify the value by converting it to cosine.
The secant of an angle is equal to the reciprocal of the cosine of that angle. This can be written as \[\sec x = \dfrac{1}{{\cos x}}\].
Therefore, we can write the given expression as
\[\sec 150^\circ = \dfrac{1}{{\cos 150^\circ }}\]
The cosine of an angle \[180^\circ - x\], is equal to the negative of the cosine of angle \[x\], where \[x\] is an acute angle.
Therefore, we get
\[\cos \left( {150^\circ } \right) = \cos \left( {180^\circ - 30^\circ } \right) = - \cos 30^\circ \]
The cosine of an angle measuring \[30^\circ \] is equal to \[\dfrac{{\sqrt 3 }}{2}\].
Substituting \[\cos 30^\circ = \dfrac{{\sqrt 3 }}{2}\] in the equation \[\cos \left( {150^\circ } \right) = - \cos 30^\circ \], we get
\[ \Rightarrow \cos \left( {150^\circ } \right) = - \dfrac{{\sqrt 3 }}{2}\]
Therefore, we get
\[ \Rightarrow \cos \left( { - 210^\circ } \right) = \cos \left( {150^\circ } \right) = - \dfrac{{\sqrt 3 }}{2}\]
Substituting \[\cos \left( {150^\circ } \right) = - \dfrac{{\sqrt 3 }}{2}\] in the equation \[\sec 150^\circ = \dfrac{1}{{\cos 150^\circ }}\], we get
\[\begin{array}{l} \Rightarrow \sec 150^\circ = \dfrac{1}{{ - \dfrac{{\sqrt 3 }}{2}}}\\ \Rightarrow \sec 150^\circ = - \dfrac{2}{{\sqrt 3 }}\end{array}\]
Therefore, we get the value of the expression \[\sec 150^\circ \] as \[ - \dfrac{2}{{\sqrt 3 }}\].
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

The draft of the Preamble of the Indian Constitution class 10 social science CBSE

Who gave "Inqilab Zindabad" slogan?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

