
Evaluate \[\mathop {\lim }\limits_{x \to 0} \dfrac{{{e^x} - {e^{ - x}} - 2\log (1 + x)}}{{x\sin x}}\].
Answer
508.2k+ views
Hint: The given problem is based on the limits in calculus. A function \[f(x)\] is said to tend to a limit \[l\] when \[x\] tends to ‘\[a\]’ if difference between \[f(x)\] and \[l\] can be made as small as by making \[x\] sufficiently near ‘\[a\]’ and we write \[\mathop {\lim }\limits_{x \to a} f(x) = l\]. In this problem we are going to evaluate the limits of exponential, logarithmic and trigonometric. For solving this we are going to use a set of differentiation formulas and L-Hospital’s rule.
Formulas used:
L-Hospital’s rule: If \[\dfrac{{f(a)}}{{g(a)}}\] is of the form \[\dfrac{0}{0}\] or \[\dfrac{\infty }{\infty }\], then \[\mathop {\lim }\limits_{x \to a} \dfrac{{f(a)}}{{g(a)}} = \mathop {\lim }\limits_{x \to a} \dfrac{{f'(a)}}{{g'(a)}}\].
Differentiation Formulas: \[\dfrac{d}{{dx}}({e^x}) = {e^x}\].
\[\dfrac{d}{{dx}}({e^{ - x}}) = - {e^{ - x}}\].
\[\dfrac{d}{{dx}}c\log (k + x) = \dfrac{c}{{k + x}}\], where \[c\]and \[k\] are constants.
\[\dfrac{d}{{dx}}uv = u\dfrac{{dv}}{{dx}} + v\dfrac{{du}}{{dx}}\].
\[\dfrac{d}{{dx}}x = 1\].
\[\dfrac{d}{{dx}}(\sin x) = \cos x\].
\[\dfrac{d}{{dx}}(\cos x) = - \sin x\].
\[\dfrac{d}{{dx}}\left( {\dfrac{c}{{k + x}}} \right) = \dfrac{{ - c}}{{{{\left( {k + x} \right)}^2}}}\], where \[c\]and \[k\] are constants.
Complete step-by-step answer:
Calculus is that branch of mathematics which mainly deals with the study of change in the value of a function as the points in the domain change. The idea of the limits is based on the calculus used to assign values to certain functions at points where no values are defined, in such a way be consistent with nearby values.
In order to simplify the given function,
\[\mathop {\lim }\limits_{x \to 0} \dfrac{{{e^x} - {e^{ - x}} - 2\log (1 + x)}}{{x\sin x}}\]
Let us substitute \[x = 0\],
\[\mathop {\lim }\limits_{x \to 0} \dfrac{{{e^x} - {e^{ - x}} - 2\log (1 + x)}}{{x\sin x}} = \dfrac{{{e^0} - {e^{ - 0}} - 2\log (1 + 0)}}{{0\sin 0}}\]
The value of \[{e^x}\],\[{e^{ - x}}\] is \[1\] and \[\sin 0\] is \[0\], by substituting this,
\[ = \dfrac{{1 - 1 - 2\log 1}}{{0 \times 0}}\]
By substituting \[\log 1 = 0\],
\[ = \dfrac{{0 - 2(0)}}{0}\]
\[ = \dfrac{{0 - 0}}{0}\]
\[ = \dfrac{0}{0}\].
Therefore we can say that, \[\mathop {\lim }\limits_{x \to 0} \dfrac{{{e^x} - {e^{ - x}} - 2\log (1 + x)}}{{x\sin x}}\left[ {\dfrac{0}{0}{\text{form}}} \right]\].
According to L-Hospital’s rule, if \[\dfrac{{f(a)}}{{g(a)}}\] is of the form \[\dfrac{0}{0}\] or \[\dfrac{\infty }{\infty }\], then \[\mathop {\lim }\limits_{x \to a} \dfrac{{f(a)}}{{g(a)}} = \mathop {\lim }\limits_{x \to a} \dfrac{{f'(a)}}{{g'(a)}}\], that is differentiating the numerator and the denominator separately.
Now by using L-Hospital’s rule,
\[\mathop {\lim }\limits_{x \to 0} \dfrac{{{e^x} - {e^{ - x}} - 2\log (1 + x)}}{{x\sin x}}\left[ {\dfrac{0}{0}{\text{form}}} \right] = \mathop {\lim }\limits_{x \to 0} \dfrac{{\dfrac{d}{{dx}}\left( {{e^x} - {e^{ - x}} - 2\log (1 + x)} \right)}}{{\dfrac{d}{{dx}}\left( {x\sin x} \right)}}\]
From the differentiation formulas we know that,
\[\dfrac{d}{{dx}}({e^x}) = {e^x}\], \[\dfrac{d}{{dx}}({e^{ - x}}) = - {e^{ - x}}\], \[\dfrac{d}{{dx}}2\log (1 + x) = \dfrac{2}{{1 + x}}\]
In denominator, the value is in the form of \[\dfrac{d}{{dx}}uv\], where \[x\] is \[u\] and \[x\sin x\] is \[v\].
\[\dfrac{d}{{dx}}uv = u\dfrac{{dv}}{{dx}} + v\dfrac{{du}}{{dx}} \Rightarrow \dfrac{d}{{dx}}\left( {x\sin x} \right) = x\dfrac{d}{{dx}}(\sin x) + \sin x\dfrac{d}{{dx}}x\].
Also we know that,
\[\dfrac{d}{{dx}}\sin x = \cos x\] and \[\dfrac{d}{{dx}}x = 1\].
Now applying differentiation,
\[\mathop {\lim }\limits_{x \to 0} \dfrac{{{e^x} - {e^{ - x}} - 2\log (1 + x)}}{{x\sin x}} = \mathop {\lim }\limits_{x \to 0} \dfrac{{{e^x} - ( - {e^{ - x}}) - \dfrac{2}{{1 + x}}}}{{x\cos x + \sin x}}\]
\[\mathop {\lim }\limits_{x \to 0} \dfrac{{{e^x} - {e^{ - x}} - 2\log (1 + x)}}{{x\sin x}} = \mathop {\lim }\limits_{x \to 0} \dfrac{{{e^x} + {e^{ - x}} - \dfrac{2}{{1 + x}}}}{{x\cos x + \sin x}}\]
Again by substituting \[x = 0\],
\[\mathop {\lim }\limits_{x \to 0} \dfrac{{{e^x} + {e^{ - x}} - \dfrac{2}{{1 + x}}}}{{x\cos x + \sin x}} = \dfrac{{{e^0} + {e^{ - 0}} - \dfrac{2}{{1 + 0}}}}{{0\cos 0 + \sin 0}}\]
The value of \[\cos 0 = 1\],
\[ = \dfrac{{1 + 1 - 2}}{{0(1) + 0}}\]
\[ = \dfrac{{2 - 2}}{0}\]
\[ = \dfrac{0}{0}\].
Again, \[\mathop {\lim }\limits_{x \to 0} \dfrac{{{e^x} + {e^{ - x}} - \dfrac{2}{{1 + x}}}}{{x\cos x + \sin x}}\left( {\dfrac{0}{0}{\text{form}}} \right)\]
Again by applying L-Hospital’s rule,
\[\mathop {\lim }\limits_{x \to 0} \dfrac{{{e^x} + {e^{ - x}} - \dfrac{2}{{1 + x}}}}{{x\cos x + \sin x}}\left( {\dfrac{0}{0}{\text{form}}} \right) = \mathop {\lim }\limits_{x \to 0} \dfrac{{\dfrac{d}{{dx}}\left( {{e^x} + {e^{ - x}} - \dfrac{2}{{1 + x}}} \right)}}{{\dfrac{d}{{dx}}\left( {x\cos x + \sin x} \right)}}\] --------(A)
We know that,
\[\dfrac{d}{{dx}}\left( {\dfrac{2}{{1 + x}}} \right) = - \dfrac{2}{{{{(1 + x)}^2}}}\] --------(1)
\[\dfrac{d}{{dx}}(\sin x) = \cos x\] --------(2)
\[\dfrac{d}{{dx}}({e^x}) = {e^x}\], \[\dfrac{d}{{dx}}({e^x}) = - {e^{ - x}}\] -------(3)
Since, by using differentiation method with respect to x,
\[ \Rightarrow \dfrac{d}{{dx}}(x\cos x)\]
on comparing this formula \[\dfrac{d}{{dx}}uv\dfrac{d}{{dx}}uv = u\dfrac{{dv}}{{dx}} + v\dfrac{{du}}{{dx}}\] with above form
\[
\Rightarrow \dfrac{d}{{dx}}(x\cos x) = x\dfrac{d}{{dx}}(\cos x) + \cos x\dfrac{d}{{dx}}x \\
= x( - \sin x) + \cos x(1) = - x\sin x + \cos x \;
\]
\[ \Rightarrow \dfrac{d}{{dx}}(x\cos x) = - x\sin x + \cos x\] -------(4)
Now applying differentiation of equation (1), (2), (3) and (4) on equation (A), then
\[ = \mathop {\lim }\limits_{x \to 0} \dfrac{{{e^x} - {e^{ - x}} - \left( { - \dfrac{2}{{{{\left( {1 + x} \right)}^2}}}} \right)}}{{ - x\sin x + \cos x + \cos x}}\]
on further simplification,
\[\mathop {\lim }\limits_{x \to 0} \dfrac{{\dfrac{d}{{dx}}\left( {{e^x} + {e^{ - x}} - \dfrac{2}{{1 + x}}} \right)}}{{\dfrac{d}{{dx}}\left( {x\cos x + \sin x} \right)}} = \mathop {\lim }\limits_{x \to 0} \dfrac{{{e^x} - {e^{ - x}} + \dfrac{2}{{{{(1 + x)}^2}}}}}{{ - x\sin x + \cos x + \cos x}}\]
Now lets substitute \[x = 0\],
\[ = \dfrac{{{e^0} - {e^{ - 0}} + \dfrac{2}{{{{\left( {1 + 0} \right)}^2}}}}}{{ - 0\sin 0 + \cos 0 + \cos 0}}\]
By substituting the values,
\[ = \dfrac{{1 - 1 + 2}}{{1 + 1}}\]
\[ = \dfrac{2}{2}\]
\[ = 1\].
Hence \[\mathop {\lim }\limits_{x \to 0} \dfrac{{{e^x} - {e^{ - x}} - 2\log (1 + x)}}{{x\sin x}} = 1\].
So, the correct answer is “1”.
Note: The above question is fully based on calculus. So one should be thorough with the differentiation formulas, trigonometry values, and other values and also with the L-Hospital’s rule.
Generally the limits problems are used in physics calculations like measuring the temperature of an ice cube sunk in a warm glass of water, designing car engines, etc.
In other words we can say that limit allows us to examine the tendency of a function around a given point even when the function is not defined at the point.
Formulas used:
L-Hospital’s rule: If \[\dfrac{{f(a)}}{{g(a)}}\] is of the form \[\dfrac{0}{0}\] or \[\dfrac{\infty }{\infty }\], then \[\mathop {\lim }\limits_{x \to a} \dfrac{{f(a)}}{{g(a)}} = \mathop {\lim }\limits_{x \to a} \dfrac{{f'(a)}}{{g'(a)}}\].
Differentiation Formulas: \[\dfrac{d}{{dx}}({e^x}) = {e^x}\].
\[\dfrac{d}{{dx}}({e^{ - x}}) = - {e^{ - x}}\].
\[\dfrac{d}{{dx}}c\log (k + x) = \dfrac{c}{{k + x}}\], where \[c\]and \[k\] are constants.
\[\dfrac{d}{{dx}}uv = u\dfrac{{dv}}{{dx}} + v\dfrac{{du}}{{dx}}\].
\[\dfrac{d}{{dx}}x = 1\].
\[\dfrac{d}{{dx}}(\sin x) = \cos x\].
\[\dfrac{d}{{dx}}(\cos x) = - \sin x\].
\[\dfrac{d}{{dx}}\left( {\dfrac{c}{{k + x}}} \right) = \dfrac{{ - c}}{{{{\left( {k + x} \right)}^2}}}\], where \[c\]and \[k\] are constants.
Complete step-by-step answer:
Calculus is that branch of mathematics which mainly deals with the study of change in the value of a function as the points in the domain change. The idea of the limits is based on the calculus used to assign values to certain functions at points where no values are defined, in such a way be consistent with nearby values.
In order to simplify the given function,
\[\mathop {\lim }\limits_{x \to 0} \dfrac{{{e^x} - {e^{ - x}} - 2\log (1 + x)}}{{x\sin x}}\]
Let us substitute \[x = 0\],
\[\mathop {\lim }\limits_{x \to 0} \dfrac{{{e^x} - {e^{ - x}} - 2\log (1 + x)}}{{x\sin x}} = \dfrac{{{e^0} - {e^{ - 0}} - 2\log (1 + 0)}}{{0\sin 0}}\]
The value of \[{e^x}\],\[{e^{ - x}}\] is \[1\] and \[\sin 0\] is \[0\], by substituting this,
\[ = \dfrac{{1 - 1 - 2\log 1}}{{0 \times 0}}\]
By substituting \[\log 1 = 0\],
\[ = \dfrac{{0 - 2(0)}}{0}\]
\[ = \dfrac{{0 - 0}}{0}\]
\[ = \dfrac{0}{0}\].
Therefore we can say that, \[\mathop {\lim }\limits_{x \to 0} \dfrac{{{e^x} - {e^{ - x}} - 2\log (1 + x)}}{{x\sin x}}\left[ {\dfrac{0}{0}{\text{form}}} \right]\].
According to L-Hospital’s rule, if \[\dfrac{{f(a)}}{{g(a)}}\] is of the form \[\dfrac{0}{0}\] or \[\dfrac{\infty }{\infty }\], then \[\mathop {\lim }\limits_{x \to a} \dfrac{{f(a)}}{{g(a)}} = \mathop {\lim }\limits_{x \to a} \dfrac{{f'(a)}}{{g'(a)}}\], that is differentiating the numerator and the denominator separately.
Now by using L-Hospital’s rule,
\[\mathop {\lim }\limits_{x \to 0} \dfrac{{{e^x} - {e^{ - x}} - 2\log (1 + x)}}{{x\sin x}}\left[ {\dfrac{0}{0}{\text{form}}} \right] = \mathop {\lim }\limits_{x \to 0} \dfrac{{\dfrac{d}{{dx}}\left( {{e^x} - {e^{ - x}} - 2\log (1 + x)} \right)}}{{\dfrac{d}{{dx}}\left( {x\sin x} \right)}}\]
From the differentiation formulas we know that,
\[\dfrac{d}{{dx}}({e^x}) = {e^x}\], \[\dfrac{d}{{dx}}({e^{ - x}}) = - {e^{ - x}}\], \[\dfrac{d}{{dx}}2\log (1 + x) = \dfrac{2}{{1 + x}}\]
In denominator, the value is in the form of \[\dfrac{d}{{dx}}uv\], where \[x\] is \[u\] and \[x\sin x\] is \[v\].
\[\dfrac{d}{{dx}}uv = u\dfrac{{dv}}{{dx}} + v\dfrac{{du}}{{dx}} \Rightarrow \dfrac{d}{{dx}}\left( {x\sin x} \right) = x\dfrac{d}{{dx}}(\sin x) + \sin x\dfrac{d}{{dx}}x\].
Also we know that,
\[\dfrac{d}{{dx}}\sin x = \cos x\] and \[\dfrac{d}{{dx}}x = 1\].
Now applying differentiation,
\[\mathop {\lim }\limits_{x \to 0} \dfrac{{{e^x} - {e^{ - x}} - 2\log (1 + x)}}{{x\sin x}} = \mathop {\lim }\limits_{x \to 0} \dfrac{{{e^x} - ( - {e^{ - x}}) - \dfrac{2}{{1 + x}}}}{{x\cos x + \sin x}}\]
\[\mathop {\lim }\limits_{x \to 0} \dfrac{{{e^x} - {e^{ - x}} - 2\log (1 + x)}}{{x\sin x}} = \mathop {\lim }\limits_{x \to 0} \dfrac{{{e^x} + {e^{ - x}} - \dfrac{2}{{1 + x}}}}{{x\cos x + \sin x}}\]
Again by substituting \[x = 0\],
\[\mathop {\lim }\limits_{x \to 0} \dfrac{{{e^x} + {e^{ - x}} - \dfrac{2}{{1 + x}}}}{{x\cos x + \sin x}} = \dfrac{{{e^0} + {e^{ - 0}} - \dfrac{2}{{1 + 0}}}}{{0\cos 0 + \sin 0}}\]
The value of \[\cos 0 = 1\],
\[ = \dfrac{{1 + 1 - 2}}{{0(1) + 0}}\]
\[ = \dfrac{{2 - 2}}{0}\]
\[ = \dfrac{0}{0}\].
Again, \[\mathop {\lim }\limits_{x \to 0} \dfrac{{{e^x} + {e^{ - x}} - \dfrac{2}{{1 + x}}}}{{x\cos x + \sin x}}\left( {\dfrac{0}{0}{\text{form}}} \right)\]
Again by applying L-Hospital’s rule,
\[\mathop {\lim }\limits_{x \to 0} \dfrac{{{e^x} + {e^{ - x}} - \dfrac{2}{{1 + x}}}}{{x\cos x + \sin x}}\left( {\dfrac{0}{0}{\text{form}}} \right) = \mathop {\lim }\limits_{x \to 0} \dfrac{{\dfrac{d}{{dx}}\left( {{e^x} + {e^{ - x}} - \dfrac{2}{{1 + x}}} \right)}}{{\dfrac{d}{{dx}}\left( {x\cos x + \sin x} \right)}}\] --------(A)
We know that,
\[\dfrac{d}{{dx}}\left( {\dfrac{2}{{1 + x}}} \right) = - \dfrac{2}{{{{(1 + x)}^2}}}\] --------(1)
\[\dfrac{d}{{dx}}(\sin x) = \cos x\] --------(2)
\[\dfrac{d}{{dx}}({e^x}) = {e^x}\], \[\dfrac{d}{{dx}}({e^x}) = - {e^{ - x}}\] -------(3)
Since, by using differentiation method with respect to x,
\[ \Rightarrow \dfrac{d}{{dx}}(x\cos x)\]
on comparing this formula \[\dfrac{d}{{dx}}uv\dfrac{d}{{dx}}uv = u\dfrac{{dv}}{{dx}} + v\dfrac{{du}}{{dx}}\] with above form
\[
\Rightarrow \dfrac{d}{{dx}}(x\cos x) = x\dfrac{d}{{dx}}(\cos x) + \cos x\dfrac{d}{{dx}}x \\
= x( - \sin x) + \cos x(1) = - x\sin x + \cos x \;
\]
\[ \Rightarrow \dfrac{d}{{dx}}(x\cos x) = - x\sin x + \cos x\] -------(4)
Now applying differentiation of equation (1), (2), (3) and (4) on equation (A), then
\[ = \mathop {\lim }\limits_{x \to 0} \dfrac{{{e^x} - {e^{ - x}} - \left( { - \dfrac{2}{{{{\left( {1 + x} \right)}^2}}}} \right)}}{{ - x\sin x + \cos x + \cos x}}\]
on further simplification,
\[\mathop {\lim }\limits_{x \to 0} \dfrac{{\dfrac{d}{{dx}}\left( {{e^x} + {e^{ - x}} - \dfrac{2}{{1 + x}}} \right)}}{{\dfrac{d}{{dx}}\left( {x\cos x + \sin x} \right)}} = \mathop {\lim }\limits_{x \to 0} \dfrac{{{e^x} - {e^{ - x}} + \dfrac{2}{{{{(1 + x)}^2}}}}}{{ - x\sin x + \cos x + \cos x}}\]
Now lets substitute \[x = 0\],
\[ = \dfrac{{{e^0} - {e^{ - 0}} + \dfrac{2}{{{{\left( {1 + 0} \right)}^2}}}}}{{ - 0\sin 0 + \cos 0 + \cos 0}}\]
By substituting the values,
\[ = \dfrac{{1 - 1 + 2}}{{1 + 1}}\]
\[ = \dfrac{2}{2}\]
\[ = 1\].
Hence \[\mathop {\lim }\limits_{x \to 0} \dfrac{{{e^x} - {e^{ - x}} - 2\log (1 + x)}}{{x\sin x}} = 1\].
So, the correct answer is “1”.
Note: The above question is fully based on calculus. So one should be thorough with the differentiation formulas, trigonometry values, and other values and also with the L-Hospital’s rule.
Generally the limits problems are used in physics calculations like measuring the temperature of an ice cube sunk in a warm glass of water, designing car engines, etc.
In other words we can say that limit allows us to examine the tendency of a function around a given point even when the function is not defined at the point.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

