
How do you evaluate \[{\log _{\dfrac{1}{4}}}\left( {\dfrac{1}{4}} \right)\]?
Answer
563.1k+ views
Hint: We use the property of logarithm that when the base of the log is equal to the arguments of the logarithm then the value of the logarithm equals to 1.
* Identity rule of logarithm states that if base is same as the argument then: \[{\log _x}(x) = 1\]
* If we have a, b and c as positive integers then \[{\log _b}(a) = c \Leftrightarrow {b^c} = a\]
* Base of log value is the number being raised to a power. It is simply the value that is written along with log in the subscript.
* Argument of log value is that number that is written inside the bracket.
Complete step-by-step answer:
The value in the subscript is called the base of the logarithm whereas the value inside the parentheses is called the argument of the logarithm.
Here \[{\log _{\dfrac{1}{4}}}\left( {\dfrac{1}{4}} \right)\]has log base as \[\dfrac{1}{4}\]and log argument as \[\dfrac{1}{4}\]
Since both base of the logarithm and argument of the logarithm are equal i.e. are equal to \[\dfrac{1}{4}\]
We can say that the value of logarithm will be equal to 1
\[\therefore \]The value of \[{\log _{\dfrac{1}{4}}}\left( {\dfrac{1}{4}} \right)\] will be equal to 1.
Note:
Many students make mistake of opening the logarithm here using the property \[\log \dfrac{m}{n} = \log m - \log n\] and then they calculate values of both log base \[\dfrac{1}{4}\] with argument 1 and log base \[\dfrac{1}{4}\]with argument 4 using the tables. Keep in mind we don’t need to solve such log values where the base is the same as the argument, we can directly apply the property, if the base was not specified here then we could’ve gone for the property that breaks division of log to subtraction.
* Identity rule of logarithm states that if base is same as the argument then: \[{\log _x}(x) = 1\]
* If we have a, b and c as positive integers then \[{\log _b}(a) = c \Leftrightarrow {b^c} = a\]
* Base of log value is the number being raised to a power. It is simply the value that is written along with log in the subscript.
* Argument of log value is that number that is written inside the bracket.
Complete step-by-step answer:
The value in the subscript is called the base of the logarithm whereas the value inside the parentheses is called the argument of the logarithm.
Here \[{\log _{\dfrac{1}{4}}}\left( {\dfrac{1}{4}} \right)\]has log base as \[\dfrac{1}{4}\]and log argument as \[\dfrac{1}{4}\]
Since both base of the logarithm and argument of the logarithm are equal i.e. are equal to \[\dfrac{1}{4}\]
We can say that the value of logarithm will be equal to 1
\[\therefore \]The value of \[{\log _{\dfrac{1}{4}}}\left( {\dfrac{1}{4}} \right)\] will be equal to 1.
Note:
Many students make mistake of opening the logarithm here using the property \[\log \dfrac{m}{n} = \log m - \log n\] and then they calculate values of both log base \[\dfrac{1}{4}\] with argument 1 and log base \[\dfrac{1}{4}\]with argument 4 using the tables. Keep in mind we don’t need to solve such log values where the base is the same as the argument, we can directly apply the property, if the base was not specified here then we could’ve gone for the property that breaks division of log to subtraction.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

