
Evaluate ${\log _3}\left( {\dfrac{1}{{81}}} \right)$.
Answer
555k+ views
Hint:$
\\
\;{\log _b}\left( {\dfrac{P}{Q}} \right) = {\log _b}\left( P \right) - {\log _b}\left( Q \right) \\
\\
$- Quotient Rule
$\;{\log _b}\left( {{P^q}} \right) = q \times {\log _b}\left( P \right)$- Power Rule
So by using the Quotient Rule and Power Rule we can simplify and thus solve the above given
logarithmic term. The logarithmic term has to be simplified using the logarithmic laws and thus the value has to be found.
Complete step by step solution:
Given
${\log _3}\left( {\dfrac{1}{{81}}} \right)..............................\left( i \right)$
Now by using the Quotient Rule $
\\
\;{\log _b}\left( {\dfrac{P}{Q}} \right) = {\log _b}\left( P \right) - {\log _b}\left( Q \right) \\
\\
$
Converting (i) in terms of Quotient rule we get:
${\log _3}\left( {\dfrac{1}{{81}}} \right) = {\log _3}\left( 1 \right) - {\log _3}\left( {81}
\right)............................\left( {ii} \right)$
Now on analyzing (ii) we know that ${\log _3}\left( 1 \right) = 0......................(iii)$
Also we can write $81 = {3^4}......................\left( {iv} \right)$
So we can substitute (iv) and (v) in (ii):
We get ${\log _3}\left( {\dfrac{1}{{81}}} \right) = 0 - {\log _3}\left( {{3^4}} \right)$
$ \Rightarrow {\log _3}\left( {\dfrac{1}{{81}}} \right) = - {\log _3}\left( {{3^4}}
\right)............................\left( v \right)$
Now substituting Power Rule $\;{\log _b}\left( {{P^q}} \right) = q \times {\log _b}\left( P \right)$in (vi):
We get ${\log _3}\left( {\dfrac{1}{{81}}} \right) = - 4{\log _3}\left( 3 \right)......................\left( {vi}
\right)$
Now analyzing (vii) we know ${\log _3}\left( 3 \right) = 1$
Substituting this value in (vii) we get ${\log _3}\left( {\dfrac{1}{{81}}} \right) = -
4...........................\left( {vii} \right)$
Therefore the answer on evaluating ${\log _3}\left( {\dfrac{1}{{81}}} \right)$ is$ - 4$.
Alternative Method:
Given
${\log _3}\left( {\dfrac{1}{{81}}} \right)$
Let ${\log _3}\left( {\dfrac{1}{{81}}} \right) = q.....................\left( {viii} \right)$
Also if ${\log _b}\left( y \right) = q$ $ \Rightarrow {b^q} = y............................\left( {ix} \right)$
(ix) Represents the exponential form of a logarithmic function.
Here $b = 3$ and also $81 = {3^4}$ such that we can write $\left( {\dfrac{1}{{81}}} \right) = {3^{ - 4}}$
$ \Rightarrow {3^{ - 4}} = y$
Now substituting the values in (ix) such that:
${3^q} = {3^{ - 4}}...................\left( x \right)$ Here the base is the same on both sides which is 3, so we can directly compare and write the answer directly.
Therefore on comparing we get $q = - 4$.
Now from (viii) ${\log _3}\left( {\dfrac{1}{{81}}} \right) = q$
Hence${\log _3}\left( {\dfrac{1}{{81}}} \right) = - 4$.
This method is comparatively easier and direct in comparison to the 1 st method.
Note: Some of the logarithmic properties useful for solving questions of derivatives are listed below:
$
1.\;{\log _b}\left( {PQ} \right) = {\log _b}\left( P \right) + {\log _b}\left( Q \right) \\
2.\;{\log _b}\left( {\dfrac{P}{Q}} \right) = {\log _b}\left( P \right) - {\log _b}\left( Q \right) \\
3.\;{\log _b}\left( {{P^q}} \right) = q \times {\log _b}\left( P \right) \\
$
Equations ‘1’ ‘2’ and ‘3’ are called Product Rule, Quotient Rule and Power Rule respectively.
Also two basic identities which are necessary to solve logarithmic questions are given below:
${\log _a}1 = 0$ where ‘a’ is any real number.
${\log _a}a = 1$ where ‘a’ is any real number.
\\
\;{\log _b}\left( {\dfrac{P}{Q}} \right) = {\log _b}\left( P \right) - {\log _b}\left( Q \right) \\
\\
$- Quotient Rule
$\;{\log _b}\left( {{P^q}} \right) = q \times {\log _b}\left( P \right)$- Power Rule
So by using the Quotient Rule and Power Rule we can simplify and thus solve the above given
logarithmic term. The logarithmic term has to be simplified using the logarithmic laws and thus the value has to be found.
Complete step by step solution:
Given
${\log _3}\left( {\dfrac{1}{{81}}} \right)..............................\left( i \right)$
Now by using the Quotient Rule $
\\
\;{\log _b}\left( {\dfrac{P}{Q}} \right) = {\log _b}\left( P \right) - {\log _b}\left( Q \right) \\
\\
$
Converting (i) in terms of Quotient rule we get:
${\log _3}\left( {\dfrac{1}{{81}}} \right) = {\log _3}\left( 1 \right) - {\log _3}\left( {81}
\right)............................\left( {ii} \right)$
Now on analyzing (ii) we know that ${\log _3}\left( 1 \right) = 0......................(iii)$
Also we can write $81 = {3^4}......................\left( {iv} \right)$
So we can substitute (iv) and (v) in (ii):
We get ${\log _3}\left( {\dfrac{1}{{81}}} \right) = 0 - {\log _3}\left( {{3^4}} \right)$
$ \Rightarrow {\log _3}\left( {\dfrac{1}{{81}}} \right) = - {\log _3}\left( {{3^4}}
\right)............................\left( v \right)$
Now substituting Power Rule $\;{\log _b}\left( {{P^q}} \right) = q \times {\log _b}\left( P \right)$in (vi):
We get ${\log _3}\left( {\dfrac{1}{{81}}} \right) = - 4{\log _3}\left( 3 \right)......................\left( {vi}
\right)$
Now analyzing (vii) we know ${\log _3}\left( 3 \right) = 1$
Substituting this value in (vii) we get ${\log _3}\left( {\dfrac{1}{{81}}} \right) = -
4...........................\left( {vii} \right)$
Therefore the answer on evaluating ${\log _3}\left( {\dfrac{1}{{81}}} \right)$ is$ - 4$.
Alternative Method:
Given
${\log _3}\left( {\dfrac{1}{{81}}} \right)$
Let ${\log _3}\left( {\dfrac{1}{{81}}} \right) = q.....................\left( {viii} \right)$
Also if ${\log _b}\left( y \right) = q$ $ \Rightarrow {b^q} = y............................\left( {ix} \right)$
(ix) Represents the exponential form of a logarithmic function.
Here $b = 3$ and also $81 = {3^4}$ such that we can write $\left( {\dfrac{1}{{81}}} \right) = {3^{ - 4}}$
$ \Rightarrow {3^{ - 4}} = y$
Now substituting the values in (ix) such that:
${3^q} = {3^{ - 4}}...................\left( x \right)$ Here the base is the same on both sides which is 3, so we can directly compare and write the answer directly.
Therefore on comparing we get $q = - 4$.
Now from (viii) ${\log _3}\left( {\dfrac{1}{{81}}} \right) = q$
Hence${\log _3}\left( {\dfrac{1}{{81}}} \right) = - 4$.
This method is comparatively easier and direct in comparison to the 1 st method.
Note: Some of the logarithmic properties useful for solving questions of derivatives are listed below:
$
1.\;{\log _b}\left( {PQ} \right) = {\log _b}\left( P \right) + {\log _b}\left( Q \right) \\
2.\;{\log _b}\left( {\dfrac{P}{Q}} \right) = {\log _b}\left( P \right) - {\log _b}\left( Q \right) \\
3.\;{\log _b}\left( {{P^q}} \right) = q \times {\log _b}\left( P \right) \\
$
Equations ‘1’ ‘2’ and ‘3’ are called Product Rule, Quotient Rule and Power Rule respectively.
Also two basic identities which are necessary to solve logarithmic questions are given below:
${\log _a}1 = 0$ where ‘a’ is any real number.
${\log _a}a = 1$ where ‘a’ is any real number.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

