
Evaluate $ {{\left( {{i}^{18}}+{{\left( \dfrac{1}{i} \right)}^{25}} \right)}^{3}} $ .
Answer
555k+ views
Hint: In this question, we have to evaluate an expression given in terms of i. For this, we will use the value of i which is $ \sqrt{-1} $ . We will first find the value of $ {{i}^{18}} $ and then find the value of $ {{\left( \dfrac{1}{i} \right)}^{25}} $ . After that, we will use the property of $ {{\left( a+b \right)}^{3}} $ to finally evaluate our answer $ {{\left( a+b \right)}^{3}} $ is equal to $ {{a}^{3}}+{{b}^{3}}+3{{a}^{2}}b+3a{{b}^{2}} $ . We will also use property of exponent $ {{a}^{m}}\cdot {{a}^{n}}={{a}^{m+n}} $ to evaluate our answer.
Complete step by step answer:
Here we are given the expression as $ {{\left( {{i}^{18}}+{{\left( \dfrac{1}{i} \right)}^{25}} \right)}^{3}} $ .
For this, let us first find the values of $ {{i}^{18}}\text{ and }{{\left( \dfrac{1}{i} \right)}^{25}} $ separately.
For $ {{i}^{18}} $ .
We know that the value is given as $ i=\sqrt{-1} $ .
Squaring both sides we get $ {{i}^{2}}={{\left( \sqrt{-1} \right)}^{2}}\Rightarrow {{i}^{2}}=-1 $ .
Hence the value of $ {{i}^{2}}=-1 $ .
Again squaring both sides we get: $ {{\left( {{i}^{2}} \right)}^{2}}={{\left( -1 \right)}^{2}}\Rightarrow {{i}^{4}}=1 $ .
Taking the power as 4 on both sides we get: $ {{\left( {{i}^{4}} \right)}^{4}}={{\left( 1 \right)}^{4}}\Rightarrow {{i}^{16}}=1 $ .
Now we need to evaluate $ {{i}^{18}} $ so let us multiply both sides by $ {{i}^{2}} $ we get: $ {{i}^{16}}\cdot {{i}^{2}}=1\cdot {{i}^{2}} $ .
We know that, $ {{x}^{m}}\cdot {{x}^{n}}={{x}^{m+n}} $ so we get: $ {{i}^{16+2}}={{i}^{2}}\Rightarrow {{i}^{18}}={{i}^{2}} $ .
Now we know that $ {{i}^{2}}=-1 $ so value of $ {{i}^{18}} $ becomes equal to -1.
Therefore, $ {{i}^{18}}=-1 $ .
For $ {{\left( \dfrac{1}{i} \right)}^{25}} $ .
Let us first simplify $ \dfrac{1}{i} $ so that we do not have i in the denominator. Multiplying the numerator and the denominator by i we get $ \dfrac{1}{{{i}^{2}}} $ . Now, the value of $ {{i}^{2}} $ is -1 so we get: $ \dfrac{1}{i}=-i $ .
So $ {{\left( \dfrac{1}{i} \right)}^{25}} $ becomes equal to $ {{\left( -i \right)}^{25}} $ .
Odd powers do not cancel negative signs, so it can be written as $ -{{i}^{25}} $ .
Now we know that $ {{i}^{4}}=1 $ so taking the power 6 on both sides we get: $ {{\left( {{i}^{4}} \right)}^{6}}={{\left( 1 \right)}^{6}}\Rightarrow {{i}^{24}}=1 $ .
Multiplying both sides by i, we get: $ {{i}^{24}}\cdot i=1\cdot i $ .
Using $ {{a}^{m}}\cdot {{a}^{n}}={{a}^{m+n}} $ we get: \[{{i}^{24+1}}=1\cdot i\Rightarrow {{i}^{25}}=i\].
Hence the value of $ {{\left( \dfrac{1}{i} \right)}^{25}} $ become equal to \[-{{i}^{25}}=-i\].
Now putting the values of $ {{i}^{18}}\text{ and }{{\left( \dfrac{1}{i} \right)}^{25}} $ in the given expression we get:
$ {{\left( {{i}^{18}}+{{\left( \dfrac{1}{i} \right)}^{25}} \right)}^{3}}={{\left( -1-i \right)}^{3}} $ .
Taking negative sign common we get:
$ {{\left( {{i}^{18}}+{{\left( \dfrac{1}{i} \right)}^{25}} \right)}^{3}}={{\left( -\left( 1+i \right) \right)}^{3}} $ .
Odd powers do not cancel negative signs so it can be written as $ -{{\left( 1+i \right)}^{3}} $ .
We know that $ {{\left( a+b \right)}^{3}}={{a}^{3}}+{{b}^{3}}+3{{a}^{2}}b+3a{{b}^{2}} $ so we get: $ -\left[ {{\left( 1 \right)}^{3}}+{{\left( i \right)}^{3}}+3{{\left( 1 \right)}^{2}}\left( i \right)+3\left( 1 \right){{\left( i \right)}^{2}} \right] $ .
We know that $ {{i}^{2}}=-1 $ multiplying i on both sides we get: $ {{i}^{3}}=-i $ .
Putting value of $ {{i}^{2}}\text{ and }{{i}^{3}} $ in the given expression we get: $ -\left[ 1-i+3i-3 \right]\Rightarrow -\left[ -2+2i \right]=2-2i $ .
Hence our required value of the expression $ {{\left( {{i}^{18}}+{{\left( \dfrac{1}{i} \right)}^{25}} \right)}^{3}} $ is equal to $ 2-2i $ .
Note:
Students should take care of the signs while solving these sums. They can also remember the values of $ {{i}^{2}}\text{ and }{{i}^{4}} $ . The student should note that $ {{i}^{4m}} $ is always equal to 1 form being any integer.
Complete step by step answer:
Here we are given the expression as $ {{\left( {{i}^{18}}+{{\left( \dfrac{1}{i} \right)}^{25}} \right)}^{3}} $ .
For this, let us first find the values of $ {{i}^{18}}\text{ and }{{\left( \dfrac{1}{i} \right)}^{25}} $ separately.
For $ {{i}^{18}} $ .
We know that the value is given as $ i=\sqrt{-1} $ .
Squaring both sides we get $ {{i}^{2}}={{\left( \sqrt{-1} \right)}^{2}}\Rightarrow {{i}^{2}}=-1 $ .
Hence the value of $ {{i}^{2}}=-1 $ .
Again squaring both sides we get: $ {{\left( {{i}^{2}} \right)}^{2}}={{\left( -1 \right)}^{2}}\Rightarrow {{i}^{4}}=1 $ .
Taking the power as 4 on both sides we get: $ {{\left( {{i}^{4}} \right)}^{4}}={{\left( 1 \right)}^{4}}\Rightarrow {{i}^{16}}=1 $ .
Now we need to evaluate $ {{i}^{18}} $ so let us multiply both sides by $ {{i}^{2}} $ we get: $ {{i}^{16}}\cdot {{i}^{2}}=1\cdot {{i}^{2}} $ .
We know that, $ {{x}^{m}}\cdot {{x}^{n}}={{x}^{m+n}} $ so we get: $ {{i}^{16+2}}={{i}^{2}}\Rightarrow {{i}^{18}}={{i}^{2}} $ .
Now we know that $ {{i}^{2}}=-1 $ so value of $ {{i}^{18}} $ becomes equal to -1.
Therefore, $ {{i}^{18}}=-1 $ .
For $ {{\left( \dfrac{1}{i} \right)}^{25}} $ .
Let us first simplify $ \dfrac{1}{i} $ so that we do not have i in the denominator. Multiplying the numerator and the denominator by i we get $ \dfrac{1}{{{i}^{2}}} $ . Now, the value of $ {{i}^{2}} $ is -1 so we get: $ \dfrac{1}{i}=-i $ .
So $ {{\left( \dfrac{1}{i} \right)}^{25}} $ becomes equal to $ {{\left( -i \right)}^{25}} $ .
Odd powers do not cancel negative signs, so it can be written as $ -{{i}^{25}} $ .
Now we know that $ {{i}^{4}}=1 $ so taking the power 6 on both sides we get: $ {{\left( {{i}^{4}} \right)}^{6}}={{\left( 1 \right)}^{6}}\Rightarrow {{i}^{24}}=1 $ .
Multiplying both sides by i, we get: $ {{i}^{24}}\cdot i=1\cdot i $ .
Using $ {{a}^{m}}\cdot {{a}^{n}}={{a}^{m+n}} $ we get: \[{{i}^{24+1}}=1\cdot i\Rightarrow {{i}^{25}}=i\].
Hence the value of $ {{\left( \dfrac{1}{i} \right)}^{25}} $ become equal to \[-{{i}^{25}}=-i\].
Now putting the values of $ {{i}^{18}}\text{ and }{{\left( \dfrac{1}{i} \right)}^{25}} $ in the given expression we get:
$ {{\left( {{i}^{18}}+{{\left( \dfrac{1}{i} \right)}^{25}} \right)}^{3}}={{\left( -1-i \right)}^{3}} $ .
Taking negative sign common we get:
$ {{\left( {{i}^{18}}+{{\left( \dfrac{1}{i} \right)}^{25}} \right)}^{3}}={{\left( -\left( 1+i \right) \right)}^{3}} $ .
Odd powers do not cancel negative signs so it can be written as $ -{{\left( 1+i \right)}^{3}} $ .
We know that $ {{\left( a+b \right)}^{3}}={{a}^{3}}+{{b}^{3}}+3{{a}^{2}}b+3a{{b}^{2}} $ so we get: $ -\left[ {{\left( 1 \right)}^{3}}+{{\left( i \right)}^{3}}+3{{\left( 1 \right)}^{2}}\left( i \right)+3\left( 1 \right){{\left( i \right)}^{2}} \right] $ .
We know that $ {{i}^{2}}=-1 $ multiplying i on both sides we get: $ {{i}^{3}}=-i $ .
Putting value of $ {{i}^{2}}\text{ and }{{i}^{3}} $ in the given expression we get: $ -\left[ 1-i+3i-3 \right]\Rightarrow -\left[ -2+2i \right]=2-2i $ .
Hence our required value of the expression $ {{\left( {{i}^{18}}+{{\left( \dfrac{1}{i} \right)}^{25}} \right)}^{3}} $ is equal to $ 2-2i $ .
Note:
Students should take care of the signs while solving these sums. They can also remember the values of $ {{i}^{2}}\text{ and }{{i}^{4}} $ . The student should note that $ {{i}^{4m}} $ is always equal to 1 form being any integer.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

