
Evaluate $ {\left( {\dfrac{a}{{2b}} + \dfrac{{2b}}{a}} \right)^2} - {\left( {\dfrac{a}{{2b}} - \dfrac{{2b}}{a}} \right)^2} - 4 $ .
Answer
566.4k+ views
Hint: Use the property of $ {\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab $ and also $ {\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab $ to simplify the given expression and then use the calculations to simplify further the expression.
Complete step-by-step answer:
Use the properties of $ {\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab $ and also $ {\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab $ to simplify the given expression.
The value of the $ {\left( {\dfrac{a}{{2b}} + \dfrac{{2b}}{a}} \right)^2} $ is equal to
$ {\left( {\dfrac{a}{{2b}}} \right)^2} + {\left( {\dfrac{{2b}}{a}} \right)^2} + 2 \times \dfrac{a}{{2b}} \times \dfrac{{2b}}{a} $ by the above mentioned property and the value of the $ {\left( {\dfrac{a}{{2b}} - \dfrac{{2b}}{a}} \right)^2} $ is equal to $ {\left( {\dfrac{a}{{2b}}} \right)^2} + {\left( {\dfrac{{2b}}{a}} \right)^2} - 2 \times \dfrac{a}{{2b}} \times \dfrac{{2b}}{a} $ . Substitute these values in the given expression and simplify.
$
{\left( {\dfrac{a}{{2b}} + \dfrac{{2b}}{a}} \right)^2} - {\left( {\dfrac{a}{{2b}} - \dfrac{{2b}}{a}} \right)^2} - 4 = {\left( {\dfrac{a}{{2b}}} \right)^2} + {\left( {\dfrac{{2b}}{a}} \right)^2} + 2 \times \dfrac{a}{{2b}} \times \dfrac{{2b}}{a} - \left( {{{\left( {\dfrac{a}{{2b}}} \right)}^2} + {{\left( {\dfrac{{2b}}{a}} \right)}^2} - 2 \times \dfrac{a}{{2b}} \times \dfrac{{2b}}{a}} \right) - 4 \\
= {\left( {\dfrac{a}{{2b}}} \right)^2} + {\left( {\dfrac{{2b}}{a}} \right)^2} + 2 - {\left( {\dfrac{a}{{2b}}} \right)^2} - {\left( {\dfrac{{2b}}{a}} \right)^2} + 2 - 4 \\
= 2 + 2 - 4 \\
= 0 \;
$
Hence, the value of the expression $ {\left( {\dfrac{a}{{2b}} + \dfrac{{2b}}{a}} \right)^2} - {\left( {\dfrac{a}{{2b}} - \dfrac{{2b}}{a}} \right)^2} - 4 $ is equal to $ 0 $ .
Also remember that the value of the expression $ {\left( {a + b} \right)^2} - {\left( {a - b} \right)^2} $ is always equal to the value $ 4ab $ .
So, verify the value of the expression $ {\left( {\dfrac{a}{{2b}} + \dfrac{{2b}}{a}} \right)^2} - {\left( {\dfrac{a}{{2b}} - \dfrac{{2b}}{a}} \right)^2} - 4 $ by using this property:
$
{\left( {\dfrac{a}{{2b}} + \dfrac{{2b}}{a}} \right)^2} - {\left( {\dfrac{a}{{2b}} - \dfrac{{2b}}{a}} \right)^2} - 4 = 4 \times \dfrac{a}{{2b}} \times \dfrac{{2b}}{a} - 4 \\
= 4 \times 1 - 4 \\
= 4 - 4 \\
= 0 \;
$
It also yields the same value for the expression given in the question.
So, the correct answer is “0”.
Note: Also remember that the value of the expression $ {\left( {a + b} \right)^2} - {\left( {a - b} \right)^2} $ is always equal to the value $ 4ab $ . Use this property and verify the result it will give the same result as above. Using identity is always preferable since it reduces the complexity of simplification.
Complete step-by-step answer:
Use the properties of $ {\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab $ and also $ {\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab $ to simplify the given expression.
The value of the $ {\left( {\dfrac{a}{{2b}} + \dfrac{{2b}}{a}} \right)^2} $ is equal to
$ {\left( {\dfrac{a}{{2b}}} \right)^2} + {\left( {\dfrac{{2b}}{a}} \right)^2} + 2 \times \dfrac{a}{{2b}} \times \dfrac{{2b}}{a} $ by the above mentioned property and the value of the $ {\left( {\dfrac{a}{{2b}} - \dfrac{{2b}}{a}} \right)^2} $ is equal to $ {\left( {\dfrac{a}{{2b}}} \right)^2} + {\left( {\dfrac{{2b}}{a}} \right)^2} - 2 \times \dfrac{a}{{2b}} \times \dfrac{{2b}}{a} $ . Substitute these values in the given expression and simplify.
$
{\left( {\dfrac{a}{{2b}} + \dfrac{{2b}}{a}} \right)^2} - {\left( {\dfrac{a}{{2b}} - \dfrac{{2b}}{a}} \right)^2} - 4 = {\left( {\dfrac{a}{{2b}}} \right)^2} + {\left( {\dfrac{{2b}}{a}} \right)^2} + 2 \times \dfrac{a}{{2b}} \times \dfrac{{2b}}{a} - \left( {{{\left( {\dfrac{a}{{2b}}} \right)}^2} + {{\left( {\dfrac{{2b}}{a}} \right)}^2} - 2 \times \dfrac{a}{{2b}} \times \dfrac{{2b}}{a}} \right) - 4 \\
= {\left( {\dfrac{a}{{2b}}} \right)^2} + {\left( {\dfrac{{2b}}{a}} \right)^2} + 2 - {\left( {\dfrac{a}{{2b}}} \right)^2} - {\left( {\dfrac{{2b}}{a}} \right)^2} + 2 - 4 \\
= 2 + 2 - 4 \\
= 0 \;
$
Hence, the value of the expression $ {\left( {\dfrac{a}{{2b}} + \dfrac{{2b}}{a}} \right)^2} - {\left( {\dfrac{a}{{2b}} - \dfrac{{2b}}{a}} \right)^2} - 4 $ is equal to $ 0 $ .
Also remember that the value of the expression $ {\left( {a + b} \right)^2} - {\left( {a - b} \right)^2} $ is always equal to the value $ 4ab $ .
So, verify the value of the expression $ {\left( {\dfrac{a}{{2b}} + \dfrac{{2b}}{a}} \right)^2} - {\left( {\dfrac{a}{{2b}} - \dfrac{{2b}}{a}} \right)^2} - 4 $ by using this property:
$
{\left( {\dfrac{a}{{2b}} + \dfrac{{2b}}{a}} \right)^2} - {\left( {\dfrac{a}{{2b}} - \dfrac{{2b}}{a}} \right)^2} - 4 = 4 \times \dfrac{a}{{2b}} \times \dfrac{{2b}}{a} - 4 \\
= 4 \times 1 - 4 \\
= 4 - 4 \\
= 0 \;
$
It also yields the same value for the expression given in the question.
So, the correct answer is “0”.
Note: Also remember that the value of the expression $ {\left( {a + b} \right)^2} - {\left( {a - b} \right)^2} $ is always equal to the value $ 4ab $ . Use this property and verify the result it will give the same result as above. Using identity is always preferable since it reduces the complexity of simplification.
Recently Updated Pages
Master Class 8 Social Science: Engaging Questions & Answers for Success

Master Class 8 English: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Master Class 8 Maths: Engaging Questions & Answers for Success

Master Class 8 Science: Engaging Questions & Answers for Success

Master Class 7 English: Engaging Questions & Answers for Success

Trending doubts
What is BLO What is the full form of BLO class 8 social science CBSE

Citizens of India can vote at the age of A 18 years class 8 social science CBSE

Full form of STD, ISD and PCO

Convert 40circ C to Fahrenheit A 104circ F B 107circ class 8 maths CBSE

Advantages and disadvantages of science

Right to vote is a AFundamental Right BFundamental class 8 social science CBSE


