
Evaluate $\left( \cos {{0}^{0}}+\sin {{45}^{0}}+\sin {{30}^{0}} \right)\left( \sin {{90}^{0}}-\cos {{45}^{0}}+\cos {{60}^{0}} \right)$
Answer
594.6k+ views
Hint:The Trigonometric ratios table helps to find the values of trigonometric standard angles such as ${{0}^{0}},{{30}^{0}},{{45}^{0}},{{60}^{0}}$ and ${{90}^{0}}$. It consists of trigonometric ratios – sine, cosine, tangent, cosecant, secant and cotangent. These ratios can be written in short as sin, cos, tan, cosec, sec and cot.
Complete step-by-step answer:
The calculus is based on trigonometry and algebra. The fundamental trigonometric functions like sine and cosine are used to describe the sound and light waves. Trigonometry is used in oceanography to calculate heights of waves and tides in oceans. It is used in satellite systems.
Let us make the table for trigonometric ratios of general angles
The value of the trigonometric ratios by using the trigonometric table is given below.
$\cos {{0}^{0}}=1,\sin {{30}^{0}}=\dfrac{1}{2},\sin {{45}^{0}}=\dfrac{1}{\sqrt{2}},\sin {{90}^{0}}=1,\cos {{60}^{0}}=\dfrac{1}{2},\cos {{45}^{0}}=\dfrac{1}{\sqrt{2}}$
Let us consider the given expression and put all the trigonometric values, we get
$\left( \cos {{0}^{0}}+\sin {{45}^{0}}+\sin {{30}^{0}} \right)\left( \sin {{90}^{0}}-\cos {{45}^{0}}+\cos {{60}^{0}} \right)=\left( 1+\dfrac{1}{\sqrt{2}}+\dfrac{1}{2} \right)\left( 1-\dfrac{1}{\sqrt{2}}+\dfrac{1}{2} \right)$
Rearranging the terms on right side, we get
$\left( \cos {{0}^{0}}+\sin {{45}^{0}}+\sin {{30}^{0}} \right)\left( \sin {{90}^{0}}-\cos {{45}^{0}}+\cos {{60}^{0}} \right)=\left( \dfrac{3}{2}+\dfrac{1}{\sqrt{2}} \right)\left( \dfrac{3}{2}-\dfrac{1}{\sqrt{2}} \right)$
Applying the algebraic identity $\left( a+b \right)\left( a-b \right)={{a}^{2}}-{{b}^{2}}$ on the right side, we get
$\left( \cos {{0}^{0}}+\sin {{45}^{0}}+\sin {{30}^{0}} \right)\left( \sin {{90}^{0}}-\cos {{45}^{0}}+\cos {{60}^{0}} \right)={{\left( \dfrac{3}{2} \right)}^{2}}-{{\left( \dfrac{1}{\sqrt{2}} \right)}^{2}}$
$\left( \cos {{0}^{0}}+\sin {{45}^{0}}+\sin {{30}^{0}} \right)\left( \sin {{90}^{0}}-\cos {{45}^{0}}+\cos {{60}^{0}} \right)=\dfrac{9}{4}-\dfrac{1}{2}$
Taking the LCM on the right side, we get
$\left( \cos {{0}^{0}}+\sin {{45}^{0}}+\sin {{30}^{0}} \right)\left( \sin {{90}^{0}}-\cos {{45}^{0}}+\cos {{60}^{0}} \right)=\dfrac{18-4}{8}$
$\left( \cos {{0}^{0}}+\sin {{45}^{0}}+\sin {{30}^{0}} \right)\left( \sin {{90}^{0}}-\cos {{45}^{0}}+\cos {{60}^{0}} \right)=\dfrac{14}{8}$
$\left( \cos {{0}^{0}}+\sin {{45}^{0}}+\sin {{30}^{0}} \right)\left( \sin {{90}^{0}}-\cos {{45}^{0}}+\cos {{60}^{0}} \right)=\dfrac{7}{4}$
Hence the required value of the given expression is $\dfrac{7}{4}$.
Note: In these types of questions, students must take care of the calculation that should be done according to the BODMAS rule. Also, students are advised to memorize at least the values of \[\sin \theta \] and \[\cos \theta \] at different angles and from these values, they can find all the other trigonometric ratios.SOHCAHTOA, A way of remembering how to compute the sine, cosine, and tangent of an angle. SOH stands for Sine equals Opposite over Hypotenuse. CAH stands for Cosine equals Adjacent over Hypotenuse. TOA stands for Tangent equals Opposite over Adjacent.
Complete step-by-step answer:
The calculus is based on trigonometry and algebra. The fundamental trigonometric functions like sine and cosine are used to describe the sound and light waves. Trigonometry is used in oceanography to calculate heights of waves and tides in oceans. It is used in satellite systems.
Let us make the table for trigonometric ratios of general angles
The value of the trigonometric ratios by using the trigonometric table is given below.
$\cos {{0}^{0}}=1,\sin {{30}^{0}}=\dfrac{1}{2},\sin {{45}^{0}}=\dfrac{1}{\sqrt{2}},\sin {{90}^{0}}=1,\cos {{60}^{0}}=\dfrac{1}{2},\cos {{45}^{0}}=\dfrac{1}{\sqrt{2}}$
Let us consider the given expression and put all the trigonometric values, we get
$\left( \cos {{0}^{0}}+\sin {{45}^{0}}+\sin {{30}^{0}} \right)\left( \sin {{90}^{0}}-\cos {{45}^{0}}+\cos {{60}^{0}} \right)=\left( 1+\dfrac{1}{\sqrt{2}}+\dfrac{1}{2} \right)\left( 1-\dfrac{1}{\sqrt{2}}+\dfrac{1}{2} \right)$
Rearranging the terms on right side, we get
$\left( \cos {{0}^{0}}+\sin {{45}^{0}}+\sin {{30}^{0}} \right)\left( \sin {{90}^{0}}-\cos {{45}^{0}}+\cos {{60}^{0}} \right)=\left( \dfrac{3}{2}+\dfrac{1}{\sqrt{2}} \right)\left( \dfrac{3}{2}-\dfrac{1}{\sqrt{2}} \right)$
Applying the algebraic identity $\left( a+b \right)\left( a-b \right)={{a}^{2}}-{{b}^{2}}$ on the right side, we get
$\left( \cos {{0}^{0}}+\sin {{45}^{0}}+\sin {{30}^{0}} \right)\left( \sin {{90}^{0}}-\cos {{45}^{0}}+\cos {{60}^{0}} \right)={{\left( \dfrac{3}{2} \right)}^{2}}-{{\left( \dfrac{1}{\sqrt{2}} \right)}^{2}}$
$\left( \cos {{0}^{0}}+\sin {{45}^{0}}+\sin {{30}^{0}} \right)\left( \sin {{90}^{0}}-\cos {{45}^{0}}+\cos {{60}^{0}} \right)=\dfrac{9}{4}-\dfrac{1}{2}$
Taking the LCM on the right side, we get
$\left( \cos {{0}^{0}}+\sin {{45}^{0}}+\sin {{30}^{0}} \right)\left( \sin {{90}^{0}}-\cos {{45}^{0}}+\cos {{60}^{0}} \right)=\dfrac{18-4}{8}$
$\left( \cos {{0}^{0}}+\sin {{45}^{0}}+\sin {{30}^{0}} \right)\left( \sin {{90}^{0}}-\cos {{45}^{0}}+\cos {{60}^{0}} \right)=\dfrac{14}{8}$
$\left( \cos {{0}^{0}}+\sin {{45}^{0}}+\sin {{30}^{0}} \right)\left( \sin {{90}^{0}}-\cos {{45}^{0}}+\cos {{60}^{0}} \right)=\dfrac{7}{4}$
Hence the required value of the given expression is $\dfrac{7}{4}$.
Note: In these types of questions, students must take care of the calculation that should be done according to the BODMAS rule. Also, students are advised to memorize at least the values of \[\sin \theta \] and \[\cos \theta \] at different angles and from these values, they can find all the other trigonometric ratios.SOHCAHTOA, A way of remembering how to compute the sine, cosine, and tangent of an angle. SOH stands for Sine equals Opposite over Hypotenuse. CAH stands for Cosine equals Adjacent over Hypotenuse. TOA stands for Tangent equals Opposite over Adjacent.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

