
Evaluate \[\int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\dfrac{{dx}}{{1 + \cos x}}} \]
A.\[ - 2\]
B.\[2\]
C.\[4\]
D.\[ - 1\]
Answer
584.4k+ views
Hint: The integrand is a well-known trigonometric expression. It can be reduced to function which can easily be integrated by using standard formulas of integration. It will also require a method of substitution to evaluate the integral.
Complete step-by-step answer:
The integral which needs to be evaluated is given as
\[\int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\dfrac{{dx}}{{1 + \cos x}}} \]
We know that
\[1 + \cos x = 2{\cos ^2}\left( {\dfrac{x}{2}} \right)\]
Hence, we have
\[\int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\dfrac{{dx}}{{1 + \cos x}}} = \int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\dfrac{{dx}}{{2{{\cos }^2}\left( {\dfrac{x}{2}} \right)}}} \]
\[ \Rightarrow \int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\dfrac{{dx}}{{1 + \cos x}}} = _{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}}\smallint \dfrac{{{{\sec }^2}\left( {\dfrac{x}{2}} \right)dx}}{2}\] … (i)
Let \[I = \int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\dfrac{1}{2}{{\sec }^2}\left( {\dfrac{x}{2}} \right)} dx\]
Let us put \[\dfrac{x}{2} = m\]
Differentiating both sides with respect to x, we get
\[\dfrac{d}{{dx}}\left( {\dfrac{x}{2}} \right) = \dfrac{{dm}}{{dx}}\]
\[
\Rightarrow \dfrac{1}{2}\dfrac{{dx}}{{dx}} = \dfrac{{dm}}{{dx}} \\
\Rightarrow \dfrac{{dx}}{2} = dm \\
\]
Therefore, \[I\] becomes
\[I = \int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {{{\sec }^2}mdm} \]
\[
\Rightarrow I = \left[ {{{\tan }^m}} \right]_{\dfrac{\pi }{8}}^{\dfrac{{3\pi }}{8}} \\
\Rightarrow I = \tan \left( {\dfrac{{3\pi }}{8}} \right) - \tan \left( {\dfrac{\pi }{8}} \right) \\
\]
Let us evaluate the values of \[\tan \left( {\dfrac{{3\pi }}{8}} \right)\] and \[\tan \left( {\dfrac{\pi }{8}} \right)\] \[\tan \left( {\dfrac{\pi }{8}} \right)\]
\[
\because \tan \left( {\dfrac{{3\pi }}{4}} \right) = \tan \left( {2.\dfrac{{3\pi }}{8}} \right) \\
\Rightarrow \tan \left( {\dfrac{{3\pi }}{4}} \right) = \dfrac{{2\tan \left( {\dfrac{{3\pi }}{8}} \right)}}{{1 - {{\tan }^2}\left( {\dfrac{{3\pi }}{8}} \right)}} \\
\Rightarrow - 1 = \dfrac{{2\tan \left( {\dfrac{{3\pi }}{8}} \right)}}{{1 - {{\tan }^2}\left( {\dfrac{{3\pi }}{8}} \right)}} \\
\Rightarrow - 1 + {\tan ^2}\left( {\dfrac{{3\pi }}{8}} \right) = 2\tan \left( {\dfrac{{3\pi }}{8}} \right) \\
\]
\[
\Rightarrow {\tan ^2}\left( {\dfrac{{3\pi }}{8}} \right) - 2\tan \left( {\dfrac{{3\pi }}{8}} \right) - 1 = 0 \\
\\
\]
Above question is a quadratic equation in \[\tan \left( {\dfrac{{3\pi }}{8}} \right)\]
\[
\therefore \tan \left( {\dfrac{{3\pi }}{8}} \right) = \dfrac{{ - \left( { - 2} \right) \pm \sqrt {{{\left( { - 2} \right)}^2} - 4 \times 1 \times \left( { - 1} \right)} }}{2} \\
\Rightarrow \tan \left( {\dfrac{{3\pi }}{8}} \right) = \dfrac{{2 \pm \sqrt {4 + 4} }}{2} \\
\Rightarrow \tan \left( {\dfrac{{3\pi }}{8}} \right) = \dfrac{{2 \pm \sqrt 2 }}{2} \\
\Rightarrow \tan \left( {\dfrac{{3\pi }}{8}} \right) = 1 \pm \sqrt 2 \\
\]
\[\because \dfrac{{3\pi }}{8}\] lies in the first quadrant. Hence \[\tan \left( {\dfrac{{3\pi }}{8}} \right)\] has to be positive.
\[\therefore \tan \left( {\dfrac{{3\pi }}{8}} \right) = 1 \pm \sqrt 2 \]
Again,
\[
\therefore \tan \left( {\dfrac{\pi }{4}} \right) = \tan \left( {2.\dfrac{\pi }{8}} \right) \\
\Rightarrow 1 = \dfrac{{2\tan \left( {\dfrac{\pi }{8}} \right)}}{{1 - {{\tan }^2}\left( {\dfrac{\pi }{8}} \right)}} \\
\Rightarrow 1 - {\tan ^2}\left( {\dfrac{\pi }{8}} \right) = 2\tan \left( {\dfrac{\pi }{8}} \right) \\
\Rightarrow {\tan ^2}\left( {\dfrac{\pi }{8}} \right) + 2\tan \left( {\dfrac{\pi }{8}} \right) - 1 = 0 \\
\]
Again, the above equation is a quadratic equation in \[\tan \left( {\dfrac{\pi }{8}} \right)\]
\[
\therefore \tan \left( {\dfrac{\pi }{8}} \right) = \dfrac{{ - 2 \pm \sqrt {{{\left( 2 \right)}^2} - 4 \times 1 \times \left( { - 1} \right)} }}{2} \\
\Rightarrow \tan \left( {\dfrac{\pi }{8}} \right) = \dfrac{{2 \pm \sqrt 8 }}{2} \\
\Rightarrow \tan \left( {\dfrac{\pi }{8}} \right) = - 1 \pm \sqrt 2 \\
\]
\[\because \dfrac{\pi }{8}\] lies in the first quadrant. Hence \[\tan \left( {\dfrac{\pi }{8}} \right)\] has to be positive.
\[\therefore \tan \left( {\dfrac{\pi }{8}} \right) = - 1 + \sqrt 2 \]
Hence,
\[
I = \tan \left( {\dfrac{{3\pi }}{8}} \right) - \tan \left( {\dfrac{\pi }{8}} \right) \\
\Rightarrow I = \left( {1 + \sqrt 2 } \right) - \left( { - 1 + \sqrt 2 } \right) \\
\Rightarrow I = 1 + \sqrt 2 + 1 - \sqrt 2 \\
I = 2 \\
\]
Thus,
\[\int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\dfrac{{dx}}{{1 + \cos x}}} = 2\]
So, the correct answer is “Option B”.
Note: The students must remember all the basic formulas of trigonometric identities. They must practice to evaluate values of trigonometric functions using simple tricks. One must keep in mind the information of the quadrant in which the angles lie. This helps to identify the correct value of the function from the values obtained after calculation.
Complete step-by-step answer:
The integral which needs to be evaluated is given as
\[\int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\dfrac{{dx}}{{1 + \cos x}}} \]
We know that
\[1 + \cos x = 2{\cos ^2}\left( {\dfrac{x}{2}} \right)\]
Hence, we have
\[\int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\dfrac{{dx}}{{1 + \cos x}}} = \int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\dfrac{{dx}}{{2{{\cos }^2}\left( {\dfrac{x}{2}} \right)}}} \]
\[ \Rightarrow \int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\dfrac{{dx}}{{1 + \cos x}}} = _{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}}\smallint \dfrac{{{{\sec }^2}\left( {\dfrac{x}{2}} \right)dx}}{2}\] … (i)
Let \[I = \int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\dfrac{1}{2}{{\sec }^2}\left( {\dfrac{x}{2}} \right)} dx\]
Let us put \[\dfrac{x}{2} = m\]
Differentiating both sides with respect to x, we get
\[\dfrac{d}{{dx}}\left( {\dfrac{x}{2}} \right) = \dfrac{{dm}}{{dx}}\]
\[
\Rightarrow \dfrac{1}{2}\dfrac{{dx}}{{dx}} = \dfrac{{dm}}{{dx}} \\
\Rightarrow \dfrac{{dx}}{2} = dm \\
\]
Therefore, \[I\] becomes
\[I = \int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {{{\sec }^2}mdm} \]
\[
\Rightarrow I = \left[ {{{\tan }^m}} \right]_{\dfrac{\pi }{8}}^{\dfrac{{3\pi }}{8}} \\
\Rightarrow I = \tan \left( {\dfrac{{3\pi }}{8}} \right) - \tan \left( {\dfrac{\pi }{8}} \right) \\
\]
Let us evaluate the values of \[\tan \left( {\dfrac{{3\pi }}{8}} \right)\] and \[\tan \left( {\dfrac{\pi }{8}} \right)\] \[\tan \left( {\dfrac{\pi }{8}} \right)\]
\[
\because \tan \left( {\dfrac{{3\pi }}{4}} \right) = \tan \left( {2.\dfrac{{3\pi }}{8}} \right) \\
\Rightarrow \tan \left( {\dfrac{{3\pi }}{4}} \right) = \dfrac{{2\tan \left( {\dfrac{{3\pi }}{8}} \right)}}{{1 - {{\tan }^2}\left( {\dfrac{{3\pi }}{8}} \right)}} \\
\Rightarrow - 1 = \dfrac{{2\tan \left( {\dfrac{{3\pi }}{8}} \right)}}{{1 - {{\tan }^2}\left( {\dfrac{{3\pi }}{8}} \right)}} \\
\Rightarrow - 1 + {\tan ^2}\left( {\dfrac{{3\pi }}{8}} \right) = 2\tan \left( {\dfrac{{3\pi }}{8}} \right) \\
\]
\[
\Rightarrow {\tan ^2}\left( {\dfrac{{3\pi }}{8}} \right) - 2\tan \left( {\dfrac{{3\pi }}{8}} \right) - 1 = 0 \\
\\
\]
Above question is a quadratic equation in \[\tan \left( {\dfrac{{3\pi }}{8}} \right)\]
\[
\therefore \tan \left( {\dfrac{{3\pi }}{8}} \right) = \dfrac{{ - \left( { - 2} \right) \pm \sqrt {{{\left( { - 2} \right)}^2} - 4 \times 1 \times \left( { - 1} \right)} }}{2} \\
\Rightarrow \tan \left( {\dfrac{{3\pi }}{8}} \right) = \dfrac{{2 \pm \sqrt {4 + 4} }}{2} \\
\Rightarrow \tan \left( {\dfrac{{3\pi }}{8}} \right) = \dfrac{{2 \pm \sqrt 2 }}{2} \\
\Rightarrow \tan \left( {\dfrac{{3\pi }}{8}} \right) = 1 \pm \sqrt 2 \\
\]
\[\because \dfrac{{3\pi }}{8}\] lies in the first quadrant. Hence \[\tan \left( {\dfrac{{3\pi }}{8}} \right)\] has to be positive.
\[\therefore \tan \left( {\dfrac{{3\pi }}{8}} \right) = 1 \pm \sqrt 2 \]
Again,
\[
\therefore \tan \left( {\dfrac{\pi }{4}} \right) = \tan \left( {2.\dfrac{\pi }{8}} \right) \\
\Rightarrow 1 = \dfrac{{2\tan \left( {\dfrac{\pi }{8}} \right)}}{{1 - {{\tan }^2}\left( {\dfrac{\pi }{8}} \right)}} \\
\Rightarrow 1 - {\tan ^2}\left( {\dfrac{\pi }{8}} \right) = 2\tan \left( {\dfrac{\pi }{8}} \right) \\
\Rightarrow {\tan ^2}\left( {\dfrac{\pi }{8}} \right) + 2\tan \left( {\dfrac{\pi }{8}} \right) - 1 = 0 \\
\]
Again, the above equation is a quadratic equation in \[\tan \left( {\dfrac{\pi }{8}} \right)\]
\[
\therefore \tan \left( {\dfrac{\pi }{8}} \right) = \dfrac{{ - 2 \pm \sqrt {{{\left( 2 \right)}^2} - 4 \times 1 \times \left( { - 1} \right)} }}{2} \\
\Rightarrow \tan \left( {\dfrac{\pi }{8}} \right) = \dfrac{{2 \pm \sqrt 8 }}{2} \\
\Rightarrow \tan \left( {\dfrac{\pi }{8}} \right) = - 1 \pm \sqrt 2 \\
\]
\[\because \dfrac{\pi }{8}\] lies in the first quadrant. Hence \[\tan \left( {\dfrac{\pi }{8}} \right)\] has to be positive.
\[\therefore \tan \left( {\dfrac{\pi }{8}} \right) = - 1 + \sqrt 2 \]
Hence,
\[
I = \tan \left( {\dfrac{{3\pi }}{8}} \right) - \tan \left( {\dfrac{\pi }{8}} \right) \\
\Rightarrow I = \left( {1 + \sqrt 2 } \right) - \left( { - 1 + \sqrt 2 } \right) \\
\Rightarrow I = 1 + \sqrt 2 + 1 - \sqrt 2 \\
I = 2 \\
\]
Thus,
\[\int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\dfrac{{dx}}{{1 + \cos x}}} = 2\]
So, the correct answer is “Option B”.
Note: The students must remember all the basic formulas of trigonometric identities. They must practice to evaluate values of trigonometric functions using simple tricks. One must keep in mind the information of the quadrant in which the angles lie. This helps to identify the correct value of the function from the values obtained after calculation.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Complete reduction of benzene diazonium chloride with class 12 chemistry CBSE

How can you identify optical isomers class 12 chemistry CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

