
Evaluate $ \int\limits_0^{\dfrac{\pi }{2}} {\log \left( {\tan x} \right)dx} $
Answer
507k+ views
Hint: To solve the above expression, we will use the concept of definite integral. Every definite integral has a solution with a unique value. Definite integral is expressed as $ \int\limits_a^b {f\left( x \right)dx} $ .
Where, $ a $ is the lower limit and $ b $ is the upper limit.
The definite integral is given as:
$ \begin{array}{c}
\int\limits_a^b {f\left( x \right)dx} = \left[ {F\left( x \right)} \right]_a^b\\
= F\left( b \right) - F\left( a \right)
\end{array} $
We will also use the following property of the definite integral:
$ \int\limits_0^a {f\left( x \right)} dx = \int\limits_0^a {f\left( {a - x} \right)} dx $
We will use the above relation to evaluate the integral in a simpler form. Also property of logarithm is used to get the results.
Complete step-by-step answer:
Given: The given integral is $ \int\limits_0^{\dfrac{\pi }{2}} {\log \left( {\tan x} \right)} dx $ .
We will assume $ I $ as the integral of $ \int\limits_0^{\dfrac{\pi }{2}} {\log \left( {\tan x} \right)} dx $ .
$ I = \int\limits_0^{\dfrac{\pi }{2}} {\log \left( {\tan x} \right)} dx $
We will use the property of definite integral which is given as,
$ \int\limits_0^a {f\left( x \right)} dx = \int\limits_0^a {f\left( {a - x} \right)} dx $
In the given expression we have $ \dfrac{\pi }{2} $ for $ a $ and $ \tan x $ for $ f\left( x \right) $ . So we will substitute these values in the above property.
\[\begin{array}{l}
I = \int\limits_0^{\dfrac{\pi }{2}} {\log \left( {\tan x} \right)} dx\\
I = \int\limits_0^{\dfrac{\pi }{2}} {\log \left\{ {\tan \left( {\dfrac{\pi }{2} - x} \right)} \right\}} dx
\end{array}\]
We know that $ \tan \left( {\dfrac{\pi }{2} - x} \right) $ equals to $ \cot x $ . We substitute $ \cot x $ for $ \tan \left( {\dfrac{\pi }{2} - x} \right) $ in the above expression.
\[I = \int\limits_0^{\dfrac{\pi }{2}} {\log \left( {\cot x} \right)dx} \]
We will rewrite the above expression in the $ \tan x $ form since $ \cot x $ is the inverse of $ \tan x $ .
\[I = \int\limits_0^{\dfrac{\pi }{2}} {\log {{\left( {\tan x} \right)}^{ - 1}}dx} \]
Since, from the property of log we know that $ \log {m^n} = n\log m $ , We will apply this property in the above expression.
\[I = - \int\limits_0^{\dfrac{\pi }{2}} {\log \left( {\tan x} \right)dx} \]
But according to our assumption, we have assumed $ I $ for \[\int\limits_0^{\dfrac{\pi }{2}} {\log \left( {\tan x} \right)dx} \].
On substituting $ I $ for \[\int\limits_0^{\dfrac{\pi }{2}} {\log \left( {\tan x} \right)dx} \]in the above expression we will get,
$ \begin{array}{c}
I = - I\\
2I = 0\\
I = 0
\end{array} $
Hence, the value of integral \[\int\limits_0^{\dfrac{\pi }{2}} {\log \left( {\tan x} \right)dx} \] is 0.
Note: In order to evaluate the integral, always use the property of definite integrals. There are a certain number of properties of definite integrals which can be used to simplify the problem. This problem can also be solved by adding \[\int\limits_0^{\dfrac{\pi }{2}} {\log \left( {\cot x} \right)dx} \] for $ I $ and \[I = \int\limits_0^{\dfrac{\pi }{2}} {\log \left( {\tan x} \right)dx} \] for $ I $ , which will give \[2I = \int\limits_0^{\dfrac{\pi }{2}} {\log \left( {\tan x + \cot x} \right)dx} \] , Under the given limits the value will be 0.
Where, $ a $ is the lower limit and $ b $ is the upper limit.
The definite integral is given as:
$ \begin{array}{c}
\int\limits_a^b {f\left( x \right)dx} = \left[ {F\left( x \right)} \right]_a^b\\
= F\left( b \right) - F\left( a \right)
\end{array} $
We will also use the following property of the definite integral:
$ \int\limits_0^a {f\left( x \right)} dx = \int\limits_0^a {f\left( {a - x} \right)} dx $
We will use the above relation to evaluate the integral in a simpler form. Also property of logarithm is used to get the results.
Complete step-by-step answer:
Given: The given integral is $ \int\limits_0^{\dfrac{\pi }{2}} {\log \left( {\tan x} \right)} dx $ .
We will assume $ I $ as the integral of $ \int\limits_0^{\dfrac{\pi }{2}} {\log \left( {\tan x} \right)} dx $ .
$ I = \int\limits_0^{\dfrac{\pi }{2}} {\log \left( {\tan x} \right)} dx $
We will use the property of definite integral which is given as,
$ \int\limits_0^a {f\left( x \right)} dx = \int\limits_0^a {f\left( {a - x} \right)} dx $
In the given expression we have $ \dfrac{\pi }{2} $ for $ a $ and $ \tan x $ for $ f\left( x \right) $ . So we will substitute these values in the above property.
\[\begin{array}{l}
I = \int\limits_0^{\dfrac{\pi }{2}} {\log \left( {\tan x} \right)} dx\\
I = \int\limits_0^{\dfrac{\pi }{2}} {\log \left\{ {\tan \left( {\dfrac{\pi }{2} - x} \right)} \right\}} dx
\end{array}\]
We know that $ \tan \left( {\dfrac{\pi }{2} - x} \right) $ equals to $ \cot x $ . We substitute $ \cot x $ for $ \tan \left( {\dfrac{\pi }{2} - x} \right) $ in the above expression.
\[I = \int\limits_0^{\dfrac{\pi }{2}} {\log \left( {\cot x} \right)dx} \]
We will rewrite the above expression in the $ \tan x $ form since $ \cot x $ is the inverse of $ \tan x $ .
\[I = \int\limits_0^{\dfrac{\pi }{2}} {\log {{\left( {\tan x} \right)}^{ - 1}}dx} \]
Since, from the property of log we know that $ \log {m^n} = n\log m $ , We will apply this property in the above expression.
\[I = - \int\limits_0^{\dfrac{\pi }{2}} {\log \left( {\tan x} \right)dx} \]
But according to our assumption, we have assumed $ I $ for \[\int\limits_0^{\dfrac{\pi }{2}} {\log \left( {\tan x} \right)dx} \].
On substituting $ I $ for \[\int\limits_0^{\dfrac{\pi }{2}} {\log \left( {\tan x} \right)dx} \]in the above expression we will get,
$ \begin{array}{c}
I = - I\\
2I = 0\\
I = 0
\end{array} $
Hence, the value of integral \[\int\limits_0^{\dfrac{\pi }{2}} {\log \left( {\tan x} \right)dx} \] is 0.
Note: In order to evaluate the integral, always use the property of definite integrals. There are a certain number of properties of definite integrals which can be used to simplify the problem. This problem can also be solved by adding \[\int\limits_0^{\dfrac{\pi }{2}} {\log \left( {\cot x} \right)dx} \] for $ I $ and \[I = \int\limits_0^{\dfrac{\pi }{2}} {\log \left( {\tan x} \right)dx} \] for $ I $ , which will give \[2I = \int\limits_0^{\dfrac{\pi }{2}} {\log \left( {\tan x + \cot x} \right)dx} \] , Under the given limits the value will be 0.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Trending doubts
Draw a labelled sketch of the human eye class 12 physics CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Which one of the following is a true fish A Jellyfish class 12 biology CBSE

Why is the cell called the structural and functional class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Write the difference between solid liquid and gas class 12 chemistry CBSE
