
How do you evaluate $ \int_0^1 {\sqrt {x - {x^2}} \,dx} $ ?
Answer
547.2k+ views
Hint: Here in this question, applying the integration directly to the function may be complicated. So to solve this question we use the formula $ \int {\sqrt {2au - {u^2}} \,du = \dfrac{{u - a}}{2}} \sqrt {2au{ - ^2}} + \dfrac{{{a^2}}}{2}{\cos ^{ - 1}}\left( {\dfrac{{a - u}}{a}} \right) + c $ where $ \sqrt {2au - {u^2}} $ , $ a > 0 $ then after integrating and applying the limit value of integration and then we simplify the function to get the required result.
Complete step-by-step answer:
The given integral in the question is a definite integral defined as a definite integral characterized by upper and lower limits. Moreover, the reason why it is called definite is because it provides a definite answer at the end of the problem.
To evaluate the given integral using the formula
$ \int {\sqrt {2au - {u^2}} \,du = \dfrac{{u - a}}{2}} \sqrt {2au{ -u ^2}} + \dfrac{{{a^2}}}{2}{\cos ^{ - 1}}\left( {\dfrac{{a - u}}{a}} \right) + c $ where $ \sqrt {2au - {u^2}} $ , $ a > 0 $
Where c is an integrating constant but in the definite integral we are not put any constant in this case we substitute the given limit points to the variable on simplification.
Compare the formula with given integral i.e., $ 2au - {u^2} $ with $ x - {x^2} $ and we see that $ a = \dfrac{1}{2} $ provides the solution that we seek; thus, with $ a = \dfrac{1}{2} $ we get using the formula provided, that:
Here limit point means variable x varies from 0 to 1 i.e., $ x:0 \to 1 $
Consider $ \int_0^1 {\sqrt {x - {x^2}} \,dx} $
Now, integrating with respect to x by using the above formula, then
$ \Rightarrow \,\,\,I = \left[ {\dfrac{{x - 1}}{2}\sqrt {2\left( {\dfrac{1}{2}} \right)x - {x^2}} + \dfrac{{{{\left( {\dfrac{1}{2}} \right)}^2}}}{2}{{\cos }^{ - 1}}\left( {\dfrac{{\dfrac{1}{2} - x}}{{\dfrac{1}{2}}}} \right)} \right]_0^1 $
$ \Rightarrow I = \left[ {\dfrac{{x - 1}}{2}\sqrt {x - {x^2}} + \dfrac{{\left( {\dfrac{1}{4}} \right)}}{2}{{\cos }^{ - 1}}\left( {\dfrac{{\dfrac{{1 - 2x}}{2}}}{{\dfrac{1}{2}}}} \right)} \right]_0^1 $
$ \Rightarrow I = \left[ {\dfrac{{x - 1}}{2}\sqrt {x - {x^2}} + \dfrac{1}{8}{{\cos }^{ - 1}}\left( {1 - 2x} \right)} \right]_0^1 $
Now applying the upper and lower limit to the variable x, then
$ \Rightarrow I = \left( {\dfrac{{1 - 1}}{2}\sqrt {1 - {1^2}} + \dfrac{1}{8}{{\cos }^{ - 1}}\left( {1 - 2(1)} \right)} \right) - \left( {\dfrac{{0 - 1}}{2}\sqrt {0 - {0^2}} + \dfrac{1}{8}{{\cos }^{ - 1}}\left( {1 - 2\left( 0 \right)} \right)} \right) $ $ \Rightarrow I = \left[ {0 + \dfrac{1}{8}{{\cos }^{ - 1}}\left( { - 1} \right) - 0 - \dfrac{1}{8}{{\cos }^{ - 1}}\left( 1 \right)} \right] $
$ \Rightarrow I = \left[ {0 + \dfrac{1}{8}{{\cos }^{ - 1}}\left( { - 1} \right) - 0 - \dfrac{1}{8}{{\cos }^{ - 1}}\left( 1 \right)} \right] $
The value of $ {\cos ^{ - 1}}\left( 1 \right) = 0 $ and $ {\cos ^{ - 1}}\left( { - 1} \right) = \pi $ , then
$ \Rightarrow I = \left[ {\dfrac{1}{8}\pi - \dfrac{1}{8}0} \right] $
$ \Rightarrow I = \dfrac{\pi }{8} $
Hence, the value of the given integral function $ \int_0^1 {\sqrt {x - {x^2}} \,dx} $ is $ \dfrac{\pi }{8} $ .
So, the correct answer is “ $ \int_0^1 {\sqrt {x - {x^2}} \,dx} $ is $ \dfrac{\pi }{8} $ ”.
Note: In this type of question sometimes they will not mention integrating the function. If the question involves $ \int {} $ this symbol means we have to integrate the function. In integration we have two kinds of integral namely, definite integral and indefinite integral. In the definite integral we have limit points. In an indefinite integral we don’t have limit points.
Complete step-by-step answer:
The given integral in the question is a definite integral defined as a definite integral characterized by upper and lower limits. Moreover, the reason why it is called definite is because it provides a definite answer at the end of the problem.
To evaluate the given integral using the formula
$ \int {\sqrt {2au - {u^2}} \,du = \dfrac{{u - a}}{2}} \sqrt {2au{ -u ^2}} + \dfrac{{{a^2}}}{2}{\cos ^{ - 1}}\left( {\dfrac{{a - u}}{a}} \right) + c $ where $ \sqrt {2au - {u^2}} $ , $ a > 0 $
Where c is an integrating constant but in the definite integral we are not put any constant in this case we substitute the given limit points to the variable on simplification.
Compare the formula with given integral i.e., $ 2au - {u^2} $ with $ x - {x^2} $ and we see that $ a = \dfrac{1}{2} $ provides the solution that we seek; thus, with $ a = \dfrac{1}{2} $ we get using the formula provided, that:
Here limit point means variable x varies from 0 to 1 i.e., $ x:0 \to 1 $
Consider $ \int_0^1 {\sqrt {x - {x^2}} \,dx} $
Now, integrating with respect to x by using the above formula, then
$ \Rightarrow \,\,\,I = \left[ {\dfrac{{x - 1}}{2}\sqrt {2\left( {\dfrac{1}{2}} \right)x - {x^2}} + \dfrac{{{{\left( {\dfrac{1}{2}} \right)}^2}}}{2}{{\cos }^{ - 1}}\left( {\dfrac{{\dfrac{1}{2} - x}}{{\dfrac{1}{2}}}} \right)} \right]_0^1 $
$ \Rightarrow I = \left[ {\dfrac{{x - 1}}{2}\sqrt {x - {x^2}} + \dfrac{{\left( {\dfrac{1}{4}} \right)}}{2}{{\cos }^{ - 1}}\left( {\dfrac{{\dfrac{{1 - 2x}}{2}}}{{\dfrac{1}{2}}}} \right)} \right]_0^1 $
$ \Rightarrow I = \left[ {\dfrac{{x - 1}}{2}\sqrt {x - {x^2}} + \dfrac{1}{8}{{\cos }^{ - 1}}\left( {1 - 2x} \right)} \right]_0^1 $
Now applying the upper and lower limit to the variable x, then
$ \Rightarrow I = \left( {\dfrac{{1 - 1}}{2}\sqrt {1 - {1^2}} + \dfrac{1}{8}{{\cos }^{ - 1}}\left( {1 - 2(1)} \right)} \right) - \left( {\dfrac{{0 - 1}}{2}\sqrt {0 - {0^2}} + \dfrac{1}{8}{{\cos }^{ - 1}}\left( {1 - 2\left( 0 \right)} \right)} \right) $ $ \Rightarrow I = \left[ {0 + \dfrac{1}{8}{{\cos }^{ - 1}}\left( { - 1} \right) - 0 - \dfrac{1}{8}{{\cos }^{ - 1}}\left( 1 \right)} \right] $
$ \Rightarrow I = \left[ {0 + \dfrac{1}{8}{{\cos }^{ - 1}}\left( { - 1} \right) - 0 - \dfrac{1}{8}{{\cos }^{ - 1}}\left( 1 \right)} \right] $
The value of $ {\cos ^{ - 1}}\left( 1 \right) = 0 $ and $ {\cos ^{ - 1}}\left( { - 1} \right) = \pi $ , then
$ \Rightarrow I = \left[ {\dfrac{1}{8}\pi - \dfrac{1}{8}0} \right] $
$ \Rightarrow I = \dfrac{\pi }{8} $
Hence, the value of the given integral function $ \int_0^1 {\sqrt {x - {x^2}} \,dx} $ is $ \dfrac{\pi }{8} $ .
So, the correct answer is “ $ \int_0^1 {\sqrt {x - {x^2}} \,dx} $ is $ \dfrac{\pi }{8} $ ”.
Note: In this type of question sometimes they will not mention integrating the function. If the question involves $ \int {} $ this symbol means we have to integrate the function. In integration we have two kinds of integral namely, definite integral and indefinite integral. In the definite integral we have limit points. In an indefinite integral we don’t have limit points.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

