
Evaluate $\int {\left[ {\sin \left( {\log x} \right) + \cos \left( {\log x} \right)} \right]} dx = $
A.$x\cos \left( {\log x} \right) + c$
B.$\cos \left( {\log x} \right) + c$
C.$x\sin \left( {\log x} \right) + c$
D.$\sin \left( {\log x} \right) + c$
Answer
504k+ views
Hint: In order to find the value of the integration of the given function, separately integrate the operands. We can see that there are two functions in each operand, so we would use the integration by parts method to integrate the functions and then substitute them in the original equation, solve them and get the results.
Formula used:
$\int {{e^t}dt} = {e^t}$
$\int {uvdx = u\int {vdx} - \int {u'\left( {\int {vdx} } \right)dx} } $
$\left( {\sin t} \right)' = \cos t$
Complete step-by-step answer:
We are given with an equation $\int {\left[ {\sin \left( {\log x} \right) + \cos \left( {\log x} \right)} \right]} dx$. Considering it to be $'I'$. Numerically written as:
$I = \int {\left[ {\sin \left( {\log x} \right) + \cos \left( {\log x} \right)} \right]} dx$
Taking the integration sign separately, we get:
$I = \int {\sin \left( {\log x} \right)} dx + \int {\cos \left( {\log x} \right)dx} $ ……..(1)
Taking the first operand to be ${I_1}$ and the other operand to be ${I_2}$, written as:
$I = {I_1} + {I_2}$
Solving the first operand ${I_1}$, we get:
${I_1} = \int {\sin \left( {\log x} \right)} dx$ ………(2)
Considering $\log x = t$.
Writing $\log x = t$ as $x = {e^t}$.
Differentiating both sides of $\log x = t$ with respect to x, we get:
$ \Rightarrow \dfrac{d}{{dx}}\left( {\log x} \right) = \dfrac{{dt}}{{dx}}$
$ \Rightarrow \dfrac{1}{x} = \dfrac{{dt}}{{dx}}$
$ \Rightarrow dx = xdt$
Substituting the value of $x = {e^t}$ in the above equation, we get:
$ \Rightarrow dx = {e^t}dt$
Substituting $dx = {e^t}dt$ and $\log x = t$ in equation 2, we get:
${I_1} = \int {\sin t.\left( {{e^t}} \right)dt} $
Since, we have two functions, so we are using integration by parts, which is as:
$\int {uvdx = u\int {vdx} - \int {u'\left( {\int {vdx} } \right)dx} } $
Comparing u, v with ${I_1}$, we get:
$
u = \sin t \\
v = {e^t} \;
$
Substituting the values in the formula of parts, we get:
${I_1} = \int {\sin t.\left( {{e^t}} \right)dt = \sin t\int {{e^t}dt} - \int {\left( {\sin t} \right)'\left( {\int {{e^t}dt} } \right)dt} } $
Since, we know that $\int {{e^t}dt} = {e^t}$ and $\left( {\sin t} \right)' = \cos t$, so substituting the value in above equation, we get:
\[ \Rightarrow {I_1} = \int {\sin t.\left( {{e^t}} \right)dt = {e^t}\sin t - \int {{e^t}\cos tdt} } + c\]
Substituting the values ${e^t}$as $x$ and $t$ as $\left( {\log x} \right)$ on the right side of the above equation and we get:
$ \Rightarrow {I_1} = \int {\sin \left( {\log x} \right)dx = x\sin \left( {\log x} \right) - \int {x\cos \left( {\log x} \right)\dfrac{{dx}}{x}} } + c$
$ \Rightarrow {I_1} = \int {\sin \left( {\log x} \right)} dx = x\sin \left( {\log x} \right) - \int {\cos \left( {\log x} \right)dx} + c$
Substituting this equation in the equation 1, and we get:
$I = x\sin \left( {\log x} \right) - \int {\cos \left( {\log x} \right)dx} + \int {\cos \left( {\log x} \right)dx} + c$
And, we can see that the first and second operand can be cancelled, so we get:
$I = x\sin \left( {\log x} \right) + c$
$ \Rightarrow \int {\left[ {\sin \left( {\log x} \right) + \cos \left( {\log x} \right)} \right]} dx = x\sin \left( {\log x} \right) + c$
Hence, $\int {\left[ {\sin \left( {\log x} \right) + \cos \left( {\log x} \right)} \right]} dx = x\sin \left( {\log x} \right) + c$ which is the option 3.
So, the correct answer is “Option 3”.
Note: The term “Operands” used in the above statements refers to the equations, variables, or constants etc., present before and after an operator (+, -, *, /).
It is always recommended to solve the integration parts step by step in order to avoid any mistakes.
Formula used:
$\int {{e^t}dt} = {e^t}$
$\int {uvdx = u\int {vdx} - \int {u'\left( {\int {vdx} } \right)dx} } $
$\left( {\sin t} \right)' = \cos t$
Complete step-by-step answer:
We are given with an equation $\int {\left[ {\sin \left( {\log x} \right) + \cos \left( {\log x} \right)} \right]} dx$. Considering it to be $'I'$. Numerically written as:
$I = \int {\left[ {\sin \left( {\log x} \right) + \cos \left( {\log x} \right)} \right]} dx$
Taking the integration sign separately, we get:
$I = \int {\sin \left( {\log x} \right)} dx + \int {\cos \left( {\log x} \right)dx} $ ……..(1)
Taking the first operand to be ${I_1}$ and the other operand to be ${I_2}$, written as:
$I = {I_1} + {I_2}$
Solving the first operand ${I_1}$, we get:
${I_1} = \int {\sin \left( {\log x} \right)} dx$ ………(2)
Considering $\log x = t$.
Writing $\log x = t$ as $x = {e^t}$.
Differentiating both sides of $\log x = t$ with respect to x, we get:
$ \Rightarrow \dfrac{d}{{dx}}\left( {\log x} \right) = \dfrac{{dt}}{{dx}}$
$ \Rightarrow \dfrac{1}{x} = \dfrac{{dt}}{{dx}}$
$ \Rightarrow dx = xdt$
Substituting the value of $x = {e^t}$ in the above equation, we get:
$ \Rightarrow dx = {e^t}dt$
Substituting $dx = {e^t}dt$ and $\log x = t$ in equation 2, we get:
${I_1} = \int {\sin t.\left( {{e^t}} \right)dt} $
Since, we have two functions, so we are using integration by parts, which is as:
$\int {uvdx = u\int {vdx} - \int {u'\left( {\int {vdx} } \right)dx} } $
Comparing u, v with ${I_1}$, we get:
$
u = \sin t \\
v = {e^t} \;
$
Substituting the values in the formula of parts, we get:
${I_1} = \int {\sin t.\left( {{e^t}} \right)dt = \sin t\int {{e^t}dt} - \int {\left( {\sin t} \right)'\left( {\int {{e^t}dt} } \right)dt} } $
Since, we know that $\int {{e^t}dt} = {e^t}$ and $\left( {\sin t} \right)' = \cos t$, so substituting the value in above equation, we get:
\[ \Rightarrow {I_1} = \int {\sin t.\left( {{e^t}} \right)dt = {e^t}\sin t - \int {{e^t}\cos tdt} } + c\]
Substituting the values ${e^t}$as $x$ and $t$ as $\left( {\log x} \right)$ on the right side of the above equation and we get:
$ \Rightarrow {I_1} = \int {\sin \left( {\log x} \right)dx = x\sin \left( {\log x} \right) - \int {x\cos \left( {\log x} \right)\dfrac{{dx}}{x}} } + c$
$ \Rightarrow {I_1} = \int {\sin \left( {\log x} \right)} dx = x\sin \left( {\log x} \right) - \int {\cos \left( {\log x} \right)dx} + c$
Substituting this equation in the equation 1, and we get:
$I = x\sin \left( {\log x} \right) - \int {\cos \left( {\log x} \right)dx} + \int {\cos \left( {\log x} \right)dx} + c$
And, we can see that the first and second operand can be cancelled, so we get:
$I = x\sin \left( {\log x} \right) + c$
$ \Rightarrow \int {\left[ {\sin \left( {\log x} \right) + \cos \left( {\log x} \right)} \right]} dx = x\sin \left( {\log x} \right) + c$
Hence, $\int {\left[ {\sin \left( {\log x} \right) + \cos \left( {\log x} \right)} \right]} dx = x\sin \left( {\log x} \right) + c$ which is the option 3.
So, the correct answer is “Option 3”.
Note: The term “Operands” used in the above statements refers to the equations, variables, or constants etc., present before and after an operator (+, -, *, /).
It is always recommended to solve the integration parts step by step in order to avoid any mistakes.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

