
Evaluate:
(i) $4 \times 6 \times 8$
(ii) $\left( { - 4} \right) \times 6 \times 8$
(iii) $\left( { - 4} \right) \times 6 \times \left( { - 8} \right)$
Answer
539.7k+ views
Hint: Here, we will evaluate the given integers. We will use the properties of integers and then the given arithmetic operation of multiplication to evaluate for the given integers. Multiplication is the process of repeated addition.
Complete Step by Step Solution:
We are given the following to evaluate the given integers.
(i) $4 \times 6 \times 8$
We know that the product of two positive integers is a positive integer.
Now, by multiplying the first two integers, we get
$ \Rightarrow 4 \times 6 \times 8 = 24 \times 8$
We know that the product of two positive integers is a positive integer.
Now, by multiplying the integers, we get
$ \Rightarrow 24 \times 8 = 192$
Thus, the product of 4, 6, 8 is 192.
(ii) $\left( { - 4} \right) \times 6 \times 8$
We know that the product of a negative integer and a positive integer is a negative integer.
Now, by multiplying the first two integers, we get
$ \Rightarrow \left( { - 4} \right) \times 6 \times 8 = \left( { - 24} \right) \times 8$
We know that the product of a negative integer and a positive integer is a negative integer.
Now, by multiplying the integers, we get
$ \Rightarrow \left( { - 24} \right) \times 8 = \left( { - 192} \right)$
Thus, the product of $ - 4$ , 6, 8 is $ - 192$.
(iii) $\left( { - 4} \right) \times 6 \times \left( { - 8} \right)$
We know that the product of a negative integer and a positive integer is a negative integer.
Now, by multiplying the first two integers, we get
$ \Rightarrow \left( { - 4} \right) \times 6 \times \left( { - 8} \right) = \left( { - 24} \right) \times \left( { - 8} \right)$
We know that the product of a negative integer and a negative integer is a positive integer. Now, by multiplying the integers, we get
$ \Rightarrow \left( { - 24} \right) \times \left( { - 8} \right) = 192$
Thus, the product of $ - 4$ , 6, $ - 8$ is 192.
Therefore, the product of 4, 6, 8 is 192, the product of $ - 4$ , 6, 8 is $ - 192$ and the product of $ - 4$ , 6, $ - 8$ is 192.
Note:
We know that the arithmetic operation of Multiplication is the repeated addition of equal groups. The properties of integers is that the product of two positive integers is always a positive integer, the product of two negative integers is always a positive integer and the product of a positive integer and a negative integer is always a negative integer. Thus the properties of integers is always used in finding the product of two integers with the like signs or unlike signs.
Complete Step by Step Solution:
We are given the following to evaluate the given integers.
(i) $4 \times 6 \times 8$
We know that the product of two positive integers is a positive integer.
Now, by multiplying the first two integers, we get
$ \Rightarrow 4 \times 6 \times 8 = 24 \times 8$
We know that the product of two positive integers is a positive integer.
Now, by multiplying the integers, we get
$ \Rightarrow 24 \times 8 = 192$
Thus, the product of 4, 6, 8 is 192.
(ii) $\left( { - 4} \right) \times 6 \times 8$
We know that the product of a negative integer and a positive integer is a negative integer.
Now, by multiplying the first two integers, we get
$ \Rightarrow \left( { - 4} \right) \times 6 \times 8 = \left( { - 24} \right) \times 8$
We know that the product of a negative integer and a positive integer is a negative integer.
Now, by multiplying the integers, we get
$ \Rightarrow \left( { - 24} \right) \times 8 = \left( { - 192} \right)$
Thus, the product of $ - 4$ , 6, 8 is $ - 192$.
(iii) $\left( { - 4} \right) \times 6 \times \left( { - 8} \right)$
We know that the product of a negative integer and a positive integer is a negative integer.
Now, by multiplying the first two integers, we get
$ \Rightarrow \left( { - 4} \right) \times 6 \times \left( { - 8} \right) = \left( { - 24} \right) \times \left( { - 8} \right)$
We know that the product of a negative integer and a negative integer is a positive integer. Now, by multiplying the integers, we get
$ \Rightarrow \left( { - 24} \right) \times \left( { - 8} \right) = 192$
Thus, the product of $ - 4$ , 6, $ - 8$ is 192.
Therefore, the product of 4, 6, 8 is 192, the product of $ - 4$ , 6, 8 is $ - 192$ and the product of $ - 4$ , 6, $ - 8$ is 192.
Note:
We know that the arithmetic operation of Multiplication is the repeated addition of equal groups. The properties of integers is that the product of two positive integers is always a positive integer, the product of two negative integers is always a positive integer and the product of a positive integer and a negative integer is always a negative integer. Thus the properties of integers is always used in finding the product of two integers with the like signs or unlike signs.
Recently Updated Pages
Master Class 6 English: Engaging Questions & Answers for Success

Master Class 6 Social Science: Engaging Questions & Answers for Success

Master Class 6 Maths: Engaging Questions & Answers for Success

Master Class 6 Science: Engaging Questions & Answers for Success

Class 6 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Economics: Engaging Questions & Answers for Success

Trending doubts
How many millions make a billion class 6 maths CBSE

How many seconds are there in an hour class 6 maths CBSE

What is meant by the term Universal Adult Franchis class 6 social science CBSE

Why is democracy considered as the best form of go class 6 social science CBSE

Four bells toll together at 900am They toll after 7811 class 6 maths CBSE

A clock is set to show the correct time at 11 am the class 6 maths CBSE


