
Evaluate each of the following using suitable identities:
A. ${{\left( 104 \right)}^{3}}$
B. ${{\left( 999 \right)}^{3}}$
Answer
499.2k+ views
Hint: We first find the simplification of the given polynomial ${{\left( 104 \right)}^{3}}$ and ${{\left( 999 \right)}^{3}}$ according to the identity ${{\left( a+b \right)}^{3}}={{a}^{3}}+3{{a}^{2}}b+3a{{b}^{2}}+{{b}^{3}}$ and ${{\left( a-b \right)}^{3}}={{a}^{3}}-3{{a}^{2}}b+3a{{b}^{2}}-{{b}^{3}}$. We need to simplify the cubic polynomial of sum or difference of two numbers. We solve the multiplication to find the simplified form of ${{\left( 104 \right)}^{3}}$ by replacing with $a=100;b=4$ and ${{\left( 999 \right)}^{3}}$ by replacing with $a=1000;b=1$.
Complete step-by-step answer:
We need to find the simplified form of ${{\left( 104 \right)}^{3}}$ and ${{\left( 999 \right)}^{3}}$.
We are going to use the identity ${{\left( a+b \right)}^{3}}={{a}^{3}}+3{{a}^{2}}b+3a{{b}^{2}}+{{b}^{3}}$ and ${{\left( a-b \right)}^{3}}={{a}^{3}}-3{{a}^{2}}b+3a{{b}^{2}}-{{b}^{3}}$.
I.We express ${{\left( 104 \right)}^{3}}$ as the cube of the sum of two numbers. We take $a=100;b=4$ for the identity of ${{\left( a+b \right)}^{3}}={{a}^{3}}+3{{a}^{2}}b+3a{{b}^{2}}+{{b}^{3}}$
${{\left( 104 \right)}^{3}}={{\left( 100+4 \right)}^{3}}={{100}^{3}}+3\times {{100}^{2}}\times 4+3\times 100\times {{4}^{2}}+{{4}^{3}}$
Therefore, the simplified form of ${{\left( 104 \right)}^{3}}$ is
${{\left( 100+4 \right)}^{3}}=1000000+120000+4800+64=1124864$
II.We express ${{\left( 999 \right)}^{3}}$ as the cube of difference of two numbers. We take $a=1000;b=1$ for the identity of ${{\left( a-b \right)}^{3}}={{a}^{3}}-3{{a}^{2}}b+3a{{b}^{2}}-{{b}^{3}}$
${{\left( 999 \right)}^{3}}={{\left( 1000-1 \right)}^{3}}={{1000}^{3}}-3\times {{1000}^{2}}\times 1+3\times 1000\times {{1}^{2}}-{{1}^{3}}$
Therefore, the simplified form of ${{\left( 999 \right)}^{3}}$ is
${{\left( 1000-1 \right)}^{3}}=1000000000-3000000+3000-1=997002999$.
Note: We also can use the binomial theorem to find the general form and then put the value of 3. We have ${{\left( a+b \right)}^{n}}={}^{n}{{C}_{0}}{{a}^{n}}{{b}^{0}}+{}^{n}{{C}_{1}}{{a}^{n-1}}{{b}^{1}}+{}^{n}{{C}_{2}}{{a}^{n-2}}{{b}^{2}}+....+{}^{n}{{C}_{r}}{{a}^{n-r}}{{b}^{r}}+....+{}^{n}{{C}_{n}}{{a}^{0}}{{b}^{n}}$. We need to find the cube of the sum of two numbers. So, we put $n=3$.
${{\left( a+b \right)}^{3}}={}^{3}{{C}_{0}}{{a}^{3}}{{b}^{0}}+{}^{3}{{C}_{1}}{{a}^{3-1}}{{b}^{1}}+{}^{3}{{C}_{2}}{{a}^{3-2}}{{b}^{2}}+{}^{3}{{C}_{3}}{{a}^{3-3}}{{b}^{3}}={{a}^{3}}+3{{a}^{2}}b+3a{{b}^{2}}+{{b}^{3}}$.
In this way we also simplify the term of ${{\left( a-b \right)}^{3}}$.
Complete step-by-step answer:
We need to find the simplified form of ${{\left( 104 \right)}^{3}}$ and ${{\left( 999 \right)}^{3}}$.
We are going to use the identity ${{\left( a+b \right)}^{3}}={{a}^{3}}+3{{a}^{2}}b+3a{{b}^{2}}+{{b}^{3}}$ and ${{\left( a-b \right)}^{3}}={{a}^{3}}-3{{a}^{2}}b+3a{{b}^{2}}-{{b}^{3}}$.
I.We express ${{\left( 104 \right)}^{3}}$ as the cube of the sum of two numbers. We take $a=100;b=4$ for the identity of ${{\left( a+b \right)}^{3}}={{a}^{3}}+3{{a}^{2}}b+3a{{b}^{2}}+{{b}^{3}}$
${{\left( 104 \right)}^{3}}={{\left( 100+4 \right)}^{3}}={{100}^{3}}+3\times {{100}^{2}}\times 4+3\times 100\times {{4}^{2}}+{{4}^{3}}$
Therefore, the simplified form of ${{\left( 104 \right)}^{3}}$ is
${{\left( 100+4 \right)}^{3}}=1000000+120000+4800+64=1124864$
II.We express ${{\left( 999 \right)}^{3}}$ as the cube of difference of two numbers. We take $a=1000;b=1$ for the identity of ${{\left( a-b \right)}^{3}}={{a}^{3}}-3{{a}^{2}}b+3a{{b}^{2}}-{{b}^{3}}$
${{\left( 999 \right)}^{3}}={{\left( 1000-1 \right)}^{3}}={{1000}^{3}}-3\times {{1000}^{2}}\times 1+3\times 1000\times {{1}^{2}}-{{1}^{3}}$
Therefore, the simplified form of ${{\left( 999 \right)}^{3}}$ is
${{\left( 1000-1 \right)}^{3}}=1000000000-3000000+3000-1=997002999$.
Note: We also can use the binomial theorem to find the general form and then put the value of 3. We have ${{\left( a+b \right)}^{n}}={}^{n}{{C}_{0}}{{a}^{n}}{{b}^{0}}+{}^{n}{{C}_{1}}{{a}^{n-1}}{{b}^{1}}+{}^{n}{{C}_{2}}{{a}^{n-2}}{{b}^{2}}+....+{}^{n}{{C}_{r}}{{a}^{n-r}}{{b}^{r}}+....+{}^{n}{{C}_{n}}{{a}^{0}}{{b}^{n}}$. We need to find the cube of the sum of two numbers. So, we put $n=3$.
${{\left( a+b \right)}^{3}}={}^{3}{{C}_{0}}{{a}^{3}}{{b}^{0}}+{}^{3}{{C}_{1}}{{a}^{3-1}}{{b}^{1}}+{}^{3}{{C}_{2}}{{a}^{3-2}}{{b}^{2}}+{}^{3}{{C}_{3}}{{a}^{3-3}}{{b}^{3}}={{a}^{3}}+3{{a}^{2}}b+3a{{b}^{2}}+{{b}^{3}}$.
In this way we also simplify the term of ${{\left( a-b \right)}^{3}}$.
Recently Updated Pages
Complete reduction of benzene diazonium chloride with class 12 chemistry CBSE

How can you identify optical isomers class 12 chemistry CBSE

The coating formed on the metals such as iron silver class 12 chemistry CBSE

Metals are refined by using different methods Which class 12 chemistry CBSE

What do you understand by denaturation of proteins class 12 chemistry CBSE

Assertion Nitrobenzene is used as a solvent in FriedelCrafts class 12 chemistry CBSE

Trending doubts
What are the 12 elements of nature class 8 chemistry CBSE

Citizens of India can vote at the age of A 18 years class 8 social science CBSE

Full form of STD, ISD and PCO

Convert 40circ C to Fahrenheit A 104circ F B 107circ class 8 maths CBSE

Advantages and disadvantages of science

Right to vote is a AFundamental Right BFundamental class 8 social science CBSE


