
How do you evaluate $ \dfrac{{{\sin }^{2}}{{15}^{\circ }}+\sin {{75}^{\circ }}}{{{\cos }^{2}}{{36}^{\circ }}+{{\cos }^{2}}{{54}^{\circ }}}$ ?
Answer
548.1k+ views
Hint: We can do this problem by separately evaluating the numerator and denominator. Then substitute the values and then divide both the values to get the final answer for the given equation.
Complete step by step solution:
According to the problem, we are asked to evaluate $ \dfrac{{{\sin }^{2}}{{15}^{\circ }}+\sin {{75}^{\circ }}}{{{\cos }^{2}}{{36}^{\circ }}+{{\cos }^{2}}{{54}^{\circ }}}$. We take the equation as equation 1.
$ \dfrac{{{\sin }^{2}}{{15}^{\circ }}+\sin {{75}^{\circ }}}{{{\cos }^{2}}{{36}^{\circ }}+{{\cos }^{2}}{{54}^{\circ }}}$--- ( 1 )
Now we solve the numerator and the denominator separately.
Numerator = $ {{\sin }^{2}}{{15}^{\circ }}+{{\sin }^{2}}{{75}^{\circ }}$ ---- (2)
Denominator = $ {{\cos }^{2}}{{36}^{\circ }}+{{\cos }^{2}}{{54}^{\circ }}$ ---- (3)
First we solve the numerator:
We know that sin75 = cos15. Therefore substituting in equation 2, we get:
$ \Rightarrow {{\sin }^{2}}{{15}^{\circ }}+{{\sin }^{2}}{{75}^{\circ }}={{\sin }^{2}}{{15}^{\circ }}+{{\cos }^{2}}{{15}^{\circ }}$ ----- (4)
But we know that, $ {{\sin }^{2}}x+{{\cos }^{2}}x=1$. Therefore, substituting it in equation 4, we get:
Here we take the value of x as 15. x = 15.
$ \Rightarrow {{\sin }^{2}}{{15}^{\circ }}+\sin {{75}^{\circ }}={{\sin }^{2}}{{15}^{\circ }}+\cos {{15}^{\circ }}$
$ \Rightarrow {{\sin }^{2}}{{15}^{\circ }}+\sin {{75}^{\circ }}=1$---- (6)
Now we solve the denominator:
We know that cos54 = sin36. Therefore, substituting in equation 3, we get:
$ \Rightarrow {{\cos }^{2}}{{36}^{\circ }}+{{\cos }^{2}}{{54}^{\circ }}={{\cos }^{2}}{{36}^{\circ }}+{{\sin }^{2}}{{36}^{\circ }}$ ----- (5)
But we know that, $ {{\sin }^{2}}x+{{\cos }^{2}}x=1$. Therefore, substituting it in equation 5, we get:
Here we take the value of x as 36. x = 3.
$ \Rightarrow {{\cos }^{2}}{{36}^{\circ }}+{{\cos }^{2}}{{54}^{\circ }}={{\cos }^{2}}{{36}^{\circ }}+{{\sin }^{2}}{{36}^{\circ }}$
$ \Rightarrow {{\cos }^{2}}{{36}^{\circ }}+{{\cos }^{2}}{{54}^{\circ }}=1$--- (7)
Therefore, substituting 6 and 7 in equation 1, we get
$ \Rightarrow \dfrac{{{\sin }^{2}}{{15}^{\circ }}+{{\sin }^{2}}{{75}^{\circ }}}{{{\cos }^{2}}{{36}^{\circ }}+{{\cos }^{2}}{{54}^{\circ }}}=\dfrac{1}{1}=1$
$ \Rightarrow \dfrac{{{\sin }^{2}}{{15}^{\circ }}+{{\sin }^{2}}{{75}^{\circ }}}{{{\cos }^{2}}{{36}^{\circ }}+{{\cos }^{2}}{{54}^{\circ }}}=1$ ---- Final answer
So, we have found the derivative of the given equation $ \dfrac{{{\sin }^{2}}{{15}^{\circ }}+\sin {{75}^{\circ }}}{{{\cos }^{2}}{{36}^{\circ }}+{{\cos }^{2}}{{54}^{\circ }}}$ as $ \dfrac{{{\sin }^{2}}{{15}^{\circ }}+{{\sin }^{2}}{{75}^{\circ }}}{{{\cos }^{2}}{{36}^{\circ }}+{{\cos }^{2}}{{54}^{\circ }}}=1$.
Therefore, the solution of the given equation $ \dfrac{{{\sin }^{2}}{{15}^{\circ }}+\sin {{75}^{\circ }}}{{{\cos }^{2}}{{36}^{\circ }}+{{\cos }^{2}}{{54}^{\circ }}}$ is $ \dfrac{{{\sin }^{2}}{{15}^{\circ }}+{{\sin }^{2}}{{75}^{\circ }}}{{{\cos }^{2}}{{36}^{\circ }}+{{\cos }^{2}}{{54}^{\circ }}}=1$.
Note: In this question, we should be careful while converting sin to cos and cos to sin. You should also remember basic trigonometric formulas to solve this. IN the above question, instead of converting sin75 to cos15, we can convert sin15 to cos75. Even then, we get the same answer.
Complete step by step solution:
According to the problem, we are asked to evaluate $ \dfrac{{{\sin }^{2}}{{15}^{\circ }}+\sin {{75}^{\circ }}}{{{\cos }^{2}}{{36}^{\circ }}+{{\cos }^{2}}{{54}^{\circ }}}$. We take the equation as equation 1.
$ \dfrac{{{\sin }^{2}}{{15}^{\circ }}+\sin {{75}^{\circ }}}{{{\cos }^{2}}{{36}^{\circ }}+{{\cos }^{2}}{{54}^{\circ }}}$--- ( 1 )
Now we solve the numerator and the denominator separately.
Numerator = $ {{\sin }^{2}}{{15}^{\circ }}+{{\sin }^{2}}{{75}^{\circ }}$ ---- (2)
Denominator = $ {{\cos }^{2}}{{36}^{\circ }}+{{\cos }^{2}}{{54}^{\circ }}$ ---- (3)
First we solve the numerator:
We know that sin75 = cos15. Therefore substituting in equation 2, we get:
$ \Rightarrow {{\sin }^{2}}{{15}^{\circ }}+{{\sin }^{2}}{{75}^{\circ }}={{\sin }^{2}}{{15}^{\circ }}+{{\cos }^{2}}{{15}^{\circ }}$ ----- (4)
But we know that, $ {{\sin }^{2}}x+{{\cos }^{2}}x=1$. Therefore, substituting it in equation 4, we get:
Here we take the value of x as 15. x = 15.
$ \Rightarrow {{\sin }^{2}}{{15}^{\circ }}+\sin {{75}^{\circ }}={{\sin }^{2}}{{15}^{\circ }}+\cos {{15}^{\circ }}$
$ \Rightarrow {{\sin }^{2}}{{15}^{\circ }}+\sin {{75}^{\circ }}=1$---- (6)
Now we solve the denominator:
We know that cos54 = sin36. Therefore, substituting in equation 3, we get:
$ \Rightarrow {{\cos }^{2}}{{36}^{\circ }}+{{\cos }^{2}}{{54}^{\circ }}={{\cos }^{2}}{{36}^{\circ }}+{{\sin }^{2}}{{36}^{\circ }}$ ----- (5)
But we know that, $ {{\sin }^{2}}x+{{\cos }^{2}}x=1$. Therefore, substituting it in equation 5, we get:
Here we take the value of x as 36. x = 3.
$ \Rightarrow {{\cos }^{2}}{{36}^{\circ }}+{{\cos }^{2}}{{54}^{\circ }}={{\cos }^{2}}{{36}^{\circ }}+{{\sin }^{2}}{{36}^{\circ }}$
$ \Rightarrow {{\cos }^{2}}{{36}^{\circ }}+{{\cos }^{2}}{{54}^{\circ }}=1$--- (7)
Therefore, substituting 6 and 7 in equation 1, we get
$ \Rightarrow \dfrac{{{\sin }^{2}}{{15}^{\circ }}+{{\sin }^{2}}{{75}^{\circ }}}{{{\cos }^{2}}{{36}^{\circ }}+{{\cos }^{2}}{{54}^{\circ }}}=\dfrac{1}{1}=1$
$ \Rightarrow \dfrac{{{\sin }^{2}}{{15}^{\circ }}+{{\sin }^{2}}{{75}^{\circ }}}{{{\cos }^{2}}{{36}^{\circ }}+{{\cos }^{2}}{{54}^{\circ }}}=1$ ---- Final answer
So, we have found the derivative of the given equation $ \dfrac{{{\sin }^{2}}{{15}^{\circ }}+\sin {{75}^{\circ }}}{{{\cos }^{2}}{{36}^{\circ }}+{{\cos }^{2}}{{54}^{\circ }}}$ as $ \dfrac{{{\sin }^{2}}{{15}^{\circ }}+{{\sin }^{2}}{{75}^{\circ }}}{{{\cos }^{2}}{{36}^{\circ }}+{{\cos }^{2}}{{54}^{\circ }}}=1$.
Therefore, the solution of the given equation $ \dfrac{{{\sin }^{2}}{{15}^{\circ }}+\sin {{75}^{\circ }}}{{{\cos }^{2}}{{36}^{\circ }}+{{\cos }^{2}}{{54}^{\circ }}}$ is $ \dfrac{{{\sin }^{2}}{{15}^{\circ }}+{{\sin }^{2}}{{75}^{\circ }}}{{{\cos }^{2}}{{36}^{\circ }}+{{\cos }^{2}}{{54}^{\circ }}}=1$.
Note: In this question, we should be careful while converting sin to cos and cos to sin. You should also remember basic trigonometric formulas to solve this. IN the above question, instead of converting sin75 to cos15, we can convert sin15 to cos75. Even then, we get the same answer.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

