
Evaluate $\dfrac{{\sec \theta \cos ec\left( {{{90}^ \circ } - \theta } \right) - \tan \theta \cot \left( {{{90}^ \circ } - \theta } \right) + {{\sin }^2}{{55}^ \circ } + {{\sin }^2}{{35}^ \circ }}}{{\tan {{10}^ \circ }\tan {{20}^ \circ }\tan {{60}^ \circ }\tan {{70}^ \circ }\tan {{80}^ \circ }}}$
A. $\dfrac{1}{{\sqrt 3 }}$
B. $\dfrac{2}{{\sqrt 3 }}$
C. $\sqrt 3 $
D. 1
Answer
551.4k+ views
Hint: Here first of all we have to use trigonometry ratios for complementary angles then we will use some trigonometric identities i.e. Pythagorean Identity and Reciprocal Identities and we will get the required answer.
Complete step-by-step answer:
We have to evaluate so let I = $\dfrac{{\sec \theta \cos ec\left( {{{90}^ \circ } - \theta } \right) - \tan \theta \cot \left( {{{90}^ \circ } - \theta } \right) + {{\sin }^2}{{55}^ \circ } + {{\sin }^2}{{35}^ \circ }}}{{\tan {{10}^ \circ }\tan {{20}^ \circ }\tan {{60}^ \circ }\tan {{70}^ \circ }\tan {{80}^ \circ }}}$
Since we know that, $\cos ec\left( {{{90}^ \circ } - \theta } \right) = \sec \theta $, $\cot \left( {{{90}^ \circ } - \theta } \right) = \tan \theta $, $\tan \left( {{{90}^ \circ } - \theta } \right) = \cot \theta $ and $\cot \theta = \dfrac{1}{{\tan \theta }}$
Therefore, I = $\dfrac{{\sec \theta \left( {\sec \theta } \right) - \tan \theta \left( {\tan \theta } \right) + {{\sin }^2}{{55}^ \circ } + {{\cos }^2}{{55}^ \circ }}}{{\tan {{10}^ \circ }\tan \left( {{{90}^ \circ } - {{80}^ \circ }} \right)\tan {{20}^ \circ }\tan \left( {{{90}^ \circ } - {{70}^ \circ }} \right)\tan {{60}^ \circ }}}$
Now simplifying the above equation, we get
$ \Rightarrow $I $ = \dfrac{{\left( {\sec \theta \times \sec \theta } \right) - \left( {\tan \theta \times \tan \theta } \right) + {{\sin }^2}{{55}^ \circ } + {{\cos }^2}{{55}^ \circ }}}{{\tan {{10}^ \circ }\cot {{10}^ \circ }\tan {{20}^ \circ }\cot {{20}^ \circ }\tan {{60}^ \circ }}}$
As we know that $\cot \theta = \dfrac{1}{{\tan \theta }}$
So, I $ = \dfrac{{\left( {\sec \theta \times \sec \theta } \right) - \left( {\tan \theta \times \tan \theta } \right) + {{\sin }^2}{{55}^ \circ } + {{\cos }^2}{{55}^ \circ }}}{{\tan {{10}^ \circ }\dfrac{1}{{\tan {{10}^ \circ }}}\tan {{20}^ \circ }\dfrac{1}{{\tan {{20}^ \circ }}}\tan {{60}^ \circ }}}$
Simplifying again the above equation we get
I \[ = \dfrac{{\left( {{{\sec }^2}\theta - {{\tan }^2}\theta } \right) + {{\sin }^2}{{55}^ \circ } + {{\cos }^2}{{55}^ \circ }}}{{\tan {{60}^ \circ }}}\]
Now we know that \[\left( {{{\sec }^2}\theta - {{\tan }^2}\theta } \right) = 1\], \[\left( {{{\sin }^2}\theta + {{\cos }^2}\theta } \right) = 1\] and the value of $\tan {60^ \circ } = \sqrt 3 $
After substituting the value in the above equation, we get
I $ = \dfrac{{1 + 1}}{{\sqrt 3 }} = \dfrac{2}{{\sqrt 3 }}$
Therefore, after evaluating $\dfrac{{\sec \theta \cos ec\left( {{{90}^ \circ } - \theta } \right) - \tan \theta \cot \left( {{{90}^ \circ } - \theta } \right) + {{\sin }^2}{{55}^ \circ } + {{\sin }^2}{{35}^ \circ }}}{{\tan {{10}^ \circ }\tan {{20}^ \circ }\tan {{60}^ \circ }\tan {{70}^ \circ }\tan {{80}^ \circ }}}$we got $\dfrac{2}{{\sqrt 3 }}$
So, the correct answer is “Option B”.
Note: In the above solution we used the trigonometric identities which are the expressions which involve trigonometric functions where the term “function” can be explained as relation between the provided inputs and the outputs of the given inputs such that each input is directly related to the one output. The representation of a function is given by supposing if there is a function “f” that belongs from X to Y then the function is represented by $f:X \to Y$ examples of function are one-one functions, onto functions, bijective functions, trigonometric function, binary function, etc.
Complete step-by-step answer:
We have to evaluate so let I = $\dfrac{{\sec \theta \cos ec\left( {{{90}^ \circ } - \theta } \right) - \tan \theta \cot \left( {{{90}^ \circ } - \theta } \right) + {{\sin }^2}{{55}^ \circ } + {{\sin }^2}{{35}^ \circ }}}{{\tan {{10}^ \circ }\tan {{20}^ \circ }\tan {{60}^ \circ }\tan {{70}^ \circ }\tan {{80}^ \circ }}}$
Since we know that, $\cos ec\left( {{{90}^ \circ } - \theta } \right) = \sec \theta $, $\cot \left( {{{90}^ \circ } - \theta } \right) = \tan \theta $, $\tan \left( {{{90}^ \circ } - \theta } \right) = \cot \theta $ and $\cot \theta = \dfrac{1}{{\tan \theta }}$
Therefore, I = $\dfrac{{\sec \theta \left( {\sec \theta } \right) - \tan \theta \left( {\tan \theta } \right) + {{\sin }^2}{{55}^ \circ } + {{\cos }^2}{{55}^ \circ }}}{{\tan {{10}^ \circ }\tan \left( {{{90}^ \circ } - {{80}^ \circ }} \right)\tan {{20}^ \circ }\tan \left( {{{90}^ \circ } - {{70}^ \circ }} \right)\tan {{60}^ \circ }}}$
Now simplifying the above equation, we get
$ \Rightarrow $I $ = \dfrac{{\left( {\sec \theta \times \sec \theta } \right) - \left( {\tan \theta \times \tan \theta } \right) + {{\sin }^2}{{55}^ \circ } + {{\cos }^2}{{55}^ \circ }}}{{\tan {{10}^ \circ }\cot {{10}^ \circ }\tan {{20}^ \circ }\cot {{20}^ \circ }\tan {{60}^ \circ }}}$
As we know that $\cot \theta = \dfrac{1}{{\tan \theta }}$
So, I $ = \dfrac{{\left( {\sec \theta \times \sec \theta } \right) - \left( {\tan \theta \times \tan \theta } \right) + {{\sin }^2}{{55}^ \circ } + {{\cos }^2}{{55}^ \circ }}}{{\tan {{10}^ \circ }\dfrac{1}{{\tan {{10}^ \circ }}}\tan {{20}^ \circ }\dfrac{1}{{\tan {{20}^ \circ }}}\tan {{60}^ \circ }}}$
Simplifying again the above equation we get
I \[ = \dfrac{{\left( {{{\sec }^2}\theta - {{\tan }^2}\theta } \right) + {{\sin }^2}{{55}^ \circ } + {{\cos }^2}{{55}^ \circ }}}{{\tan {{60}^ \circ }}}\]
Now we know that \[\left( {{{\sec }^2}\theta - {{\tan }^2}\theta } \right) = 1\], \[\left( {{{\sin }^2}\theta + {{\cos }^2}\theta } \right) = 1\] and the value of $\tan {60^ \circ } = \sqrt 3 $
After substituting the value in the above equation, we get
I $ = \dfrac{{1 + 1}}{{\sqrt 3 }} = \dfrac{2}{{\sqrt 3 }}$
Therefore, after evaluating $\dfrac{{\sec \theta \cos ec\left( {{{90}^ \circ } - \theta } \right) - \tan \theta \cot \left( {{{90}^ \circ } - \theta } \right) + {{\sin }^2}{{55}^ \circ } + {{\sin }^2}{{35}^ \circ }}}{{\tan {{10}^ \circ }\tan {{20}^ \circ }\tan {{60}^ \circ }\tan {{70}^ \circ }\tan {{80}^ \circ }}}$we got $\dfrac{2}{{\sqrt 3 }}$
So, the correct answer is “Option B”.
Note: In the above solution we used the trigonometric identities which are the expressions which involve trigonometric functions where the term “function” can be explained as relation between the provided inputs and the outputs of the given inputs such that each input is directly related to the one output. The representation of a function is given by supposing if there is a function “f” that belongs from X to Y then the function is represented by $f:X \to Y$ examples of function are one-one functions, onto functions, bijective functions, trigonometric function, binary function, etc.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

How many 5 digit telephone numbers can be constructed class 11 maths CBSE

Draw a well labelled diagram of reflex arc and explain class 11 biology CBSE

What is the difference between noise and music Can class 11 physics CBSE

A current I is flowing through wire PQR This wire is class 11 physics CBSE

Trending doubts
1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Draw a diagram of nephron and explain its structur class 11 biology CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Swaraj means AComplete Independence B Self rule C Self class 11 social science CBSE

Write the differences between monocot plants and dicot class 11 biology CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

