
Evaluate $\dfrac{{\sec \theta \cos ec\left( {{{90}^ \circ } - \theta } \right) - \tan \theta \cot \left( {{{90}^ \circ } - \theta } \right) + {{\sin }^2}{{55}^ \circ } + {{\sin }^2}{{35}^ \circ }}}{{\tan {{10}^ \circ }\tan {{20}^ \circ }\tan {{60}^ \circ }\tan {{70}^ \circ }\tan {{80}^ \circ }}}$
A. $\dfrac{1}{{\sqrt 3 }}$
B. $\dfrac{2}{{\sqrt 3 }}$
C. $\sqrt 3 $
D. 1
Answer
560.7k+ views
Hint: Here first of all we have to use trigonometry ratios for complementary angles then we will use some trigonometric identities i.e. Pythagorean Identity and Reciprocal Identities and we will get the required answer.
Complete step-by-step answer:
We have to evaluate so let I = $\dfrac{{\sec \theta \cos ec\left( {{{90}^ \circ } - \theta } \right) - \tan \theta \cot \left( {{{90}^ \circ } - \theta } \right) + {{\sin }^2}{{55}^ \circ } + {{\sin }^2}{{35}^ \circ }}}{{\tan {{10}^ \circ }\tan {{20}^ \circ }\tan {{60}^ \circ }\tan {{70}^ \circ }\tan {{80}^ \circ }}}$
Since we know that, $\cos ec\left( {{{90}^ \circ } - \theta } \right) = \sec \theta $, $\cot \left( {{{90}^ \circ } - \theta } \right) = \tan \theta $, $\tan \left( {{{90}^ \circ } - \theta } \right) = \cot \theta $ and $\cot \theta = \dfrac{1}{{\tan \theta }}$
Therefore, I = $\dfrac{{\sec \theta \left( {\sec \theta } \right) - \tan \theta \left( {\tan \theta } \right) + {{\sin }^2}{{55}^ \circ } + {{\cos }^2}{{55}^ \circ }}}{{\tan {{10}^ \circ }\tan \left( {{{90}^ \circ } - {{80}^ \circ }} \right)\tan {{20}^ \circ }\tan \left( {{{90}^ \circ } - {{70}^ \circ }} \right)\tan {{60}^ \circ }}}$
Now simplifying the above equation, we get
$ \Rightarrow $I $ = \dfrac{{\left( {\sec \theta \times \sec \theta } \right) - \left( {\tan \theta \times \tan \theta } \right) + {{\sin }^2}{{55}^ \circ } + {{\cos }^2}{{55}^ \circ }}}{{\tan {{10}^ \circ }\cot {{10}^ \circ }\tan {{20}^ \circ }\cot {{20}^ \circ }\tan {{60}^ \circ }}}$
As we know that $\cot \theta = \dfrac{1}{{\tan \theta }}$
So, I $ = \dfrac{{\left( {\sec \theta \times \sec \theta } \right) - \left( {\tan \theta \times \tan \theta } \right) + {{\sin }^2}{{55}^ \circ } + {{\cos }^2}{{55}^ \circ }}}{{\tan {{10}^ \circ }\dfrac{1}{{\tan {{10}^ \circ }}}\tan {{20}^ \circ }\dfrac{1}{{\tan {{20}^ \circ }}}\tan {{60}^ \circ }}}$
Simplifying again the above equation we get
I \[ = \dfrac{{\left( {{{\sec }^2}\theta - {{\tan }^2}\theta } \right) + {{\sin }^2}{{55}^ \circ } + {{\cos }^2}{{55}^ \circ }}}{{\tan {{60}^ \circ }}}\]
Now we know that \[\left( {{{\sec }^2}\theta - {{\tan }^2}\theta } \right) = 1\], \[\left( {{{\sin }^2}\theta + {{\cos }^2}\theta } \right) = 1\] and the value of $\tan {60^ \circ } = \sqrt 3 $
After substituting the value in the above equation, we get
I $ = \dfrac{{1 + 1}}{{\sqrt 3 }} = \dfrac{2}{{\sqrt 3 }}$
Therefore, after evaluating $\dfrac{{\sec \theta \cos ec\left( {{{90}^ \circ } - \theta } \right) - \tan \theta \cot \left( {{{90}^ \circ } - \theta } \right) + {{\sin }^2}{{55}^ \circ } + {{\sin }^2}{{35}^ \circ }}}{{\tan {{10}^ \circ }\tan {{20}^ \circ }\tan {{60}^ \circ }\tan {{70}^ \circ }\tan {{80}^ \circ }}}$we got $\dfrac{2}{{\sqrt 3 }}$
So, the correct answer is “Option B”.
Note: In the above solution we used the trigonometric identities which are the expressions which involve trigonometric functions where the term “function” can be explained as relation between the provided inputs and the outputs of the given inputs such that each input is directly related to the one output. The representation of a function is given by supposing if there is a function “f” that belongs from X to Y then the function is represented by $f:X \to Y$ examples of function are one-one functions, onto functions, bijective functions, trigonometric function, binary function, etc.
Complete step-by-step answer:
We have to evaluate so let I = $\dfrac{{\sec \theta \cos ec\left( {{{90}^ \circ } - \theta } \right) - \tan \theta \cot \left( {{{90}^ \circ } - \theta } \right) + {{\sin }^2}{{55}^ \circ } + {{\sin }^2}{{35}^ \circ }}}{{\tan {{10}^ \circ }\tan {{20}^ \circ }\tan {{60}^ \circ }\tan {{70}^ \circ }\tan {{80}^ \circ }}}$
Since we know that, $\cos ec\left( {{{90}^ \circ } - \theta } \right) = \sec \theta $, $\cot \left( {{{90}^ \circ } - \theta } \right) = \tan \theta $, $\tan \left( {{{90}^ \circ } - \theta } \right) = \cot \theta $ and $\cot \theta = \dfrac{1}{{\tan \theta }}$
Therefore, I = $\dfrac{{\sec \theta \left( {\sec \theta } \right) - \tan \theta \left( {\tan \theta } \right) + {{\sin }^2}{{55}^ \circ } + {{\cos }^2}{{55}^ \circ }}}{{\tan {{10}^ \circ }\tan \left( {{{90}^ \circ } - {{80}^ \circ }} \right)\tan {{20}^ \circ }\tan \left( {{{90}^ \circ } - {{70}^ \circ }} \right)\tan {{60}^ \circ }}}$
Now simplifying the above equation, we get
$ \Rightarrow $I $ = \dfrac{{\left( {\sec \theta \times \sec \theta } \right) - \left( {\tan \theta \times \tan \theta } \right) + {{\sin }^2}{{55}^ \circ } + {{\cos }^2}{{55}^ \circ }}}{{\tan {{10}^ \circ }\cot {{10}^ \circ }\tan {{20}^ \circ }\cot {{20}^ \circ }\tan {{60}^ \circ }}}$
As we know that $\cot \theta = \dfrac{1}{{\tan \theta }}$
So, I $ = \dfrac{{\left( {\sec \theta \times \sec \theta } \right) - \left( {\tan \theta \times \tan \theta } \right) + {{\sin }^2}{{55}^ \circ } + {{\cos }^2}{{55}^ \circ }}}{{\tan {{10}^ \circ }\dfrac{1}{{\tan {{10}^ \circ }}}\tan {{20}^ \circ }\dfrac{1}{{\tan {{20}^ \circ }}}\tan {{60}^ \circ }}}$
Simplifying again the above equation we get
I \[ = \dfrac{{\left( {{{\sec }^2}\theta - {{\tan }^2}\theta } \right) + {{\sin }^2}{{55}^ \circ } + {{\cos }^2}{{55}^ \circ }}}{{\tan {{60}^ \circ }}}\]
Now we know that \[\left( {{{\sec }^2}\theta - {{\tan }^2}\theta } \right) = 1\], \[\left( {{{\sin }^2}\theta + {{\cos }^2}\theta } \right) = 1\] and the value of $\tan {60^ \circ } = \sqrt 3 $
After substituting the value in the above equation, we get
I $ = \dfrac{{1 + 1}}{{\sqrt 3 }} = \dfrac{2}{{\sqrt 3 }}$
Therefore, after evaluating $\dfrac{{\sec \theta \cos ec\left( {{{90}^ \circ } - \theta } \right) - \tan \theta \cot \left( {{{90}^ \circ } - \theta } \right) + {{\sin }^2}{{55}^ \circ } + {{\sin }^2}{{35}^ \circ }}}{{\tan {{10}^ \circ }\tan {{20}^ \circ }\tan {{60}^ \circ }\tan {{70}^ \circ }\tan {{80}^ \circ }}}$we got $\dfrac{2}{{\sqrt 3 }}$
So, the correct answer is “Option B”.
Note: In the above solution we used the trigonometric identities which are the expressions which involve trigonometric functions where the term “function” can be explained as relation between the provided inputs and the outputs of the given inputs such that each input is directly related to the one output. The representation of a function is given by supposing if there is a function “f” that belongs from X to Y then the function is represented by $f:X \to Y$ examples of function are one-one functions, onto functions, bijective functions, trigonometric function, binary function, etc.
Recently Updated Pages
Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which type of resource is iron ore A Renewable B Biotic class 11 social science CBSE

10 examples of friction in our daily life

Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

