
Evaluate $\dfrac{{\sec \theta \cos ec\left( {{{90}^ \circ } - \theta } \right) - \tan \theta \cot \left( {{{90}^ \circ } - \theta } \right) + {{\sin }^2}{{55}^ \circ } + {{\sin }^2}{{35}^ \circ }}}{{\tan {{10}^ \circ }\tan {{20}^ \circ }\tan {{60}^ \circ }\tan {{70}^ \circ }\tan {{80}^ \circ }}}$
A. $\dfrac{1}{{\sqrt 3 }}$
B. $\dfrac{2}{{\sqrt 3 }}$
C. $\sqrt 3 $
D. 1
Answer
579k+ views
Hint: Here first of all we have to use trigonometry ratios for complementary angles then we will use some trigonometric identities i.e. Pythagorean Identity and Reciprocal Identities and we will get the required answer.
Complete step-by-step answer:
We have to evaluate so let I = $\dfrac{{\sec \theta \cos ec\left( {{{90}^ \circ } - \theta } \right) - \tan \theta \cot \left( {{{90}^ \circ } - \theta } \right) + {{\sin }^2}{{55}^ \circ } + {{\sin }^2}{{35}^ \circ }}}{{\tan {{10}^ \circ }\tan {{20}^ \circ }\tan {{60}^ \circ }\tan {{70}^ \circ }\tan {{80}^ \circ }}}$
Since we know that, $\cos ec\left( {{{90}^ \circ } - \theta } \right) = \sec \theta $, $\cot \left( {{{90}^ \circ } - \theta } \right) = \tan \theta $, $\tan \left( {{{90}^ \circ } - \theta } \right) = \cot \theta $ and $\cot \theta = \dfrac{1}{{\tan \theta }}$
Therefore, I = $\dfrac{{\sec \theta \left( {\sec \theta } \right) - \tan \theta \left( {\tan \theta } \right) + {{\sin }^2}{{55}^ \circ } + {{\cos }^2}{{55}^ \circ }}}{{\tan {{10}^ \circ }\tan \left( {{{90}^ \circ } - {{80}^ \circ }} \right)\tan {{20}^ \circ }\tan \left( {{{90}^ \circ } - {{70}^ \circ }} \right)\tan {{60}^ \circ }}}$
Now simplifying the above equation, we get
$ \Rightarrow $I $ = \dfrac{{\left( {\sec \theta \times \sec \theta } \right) - \left( {\tan \theta \times \tan \theta } \right) + {{\sin }^2}{{55}^ \circ } + {{\cos }^2}{{55}^ \circ }}}{{\tan {{10}^ \circ }\cot {{10}^ \circ }\tan {{20}^ \circ }\cot {{20}^ \circ }\tan {{60}^ \circ }}}$
As we know that $\cot \theta = \dfrac{1}{{\tan \theta }}$
So, I $ = \dfrac{{\left( {\sec \theta \times \sec \theta } \right) - \left( {\tan \theta \times \tan \theta } \right) + {{\sin }^2}{{55}^ \circ } + {{\cos }^2}{{55}^ \circ }}}{{\tan {{10}^ \circ }\dfrac{1}{{\tan {{10}^ \circ }}}\tan {{20}^ \circ }\dfrac{1}{{\tan {{20}^ \circ }}}\tan {{60}^ \circ }}}$
Simplifying again the above equation we get
I \[ = \dfrac{{\left( {{{\sec }^2}\theta - {{\tan }^2}\theta } \right) + {{\sin }^2}{{55}^ \circ } + {{\cos }^2}{{55}^ \circ }}}{{\tan {{60}^ \circ }}}\]
Now we know that \[\left( {{{\sec }^2}\theta - {{\tan }^2}\theta } \right) = 1\], \[\left( {{{\sin }^2}\theta + {{\cos }^2}\theta } \right) = 1\] and the value of $\tan {60^ \circ } = \sqrt 3 $
After substituting the value in the above equation, we get
I $ = \dfrac{{1 + 1}}{{\sqrt 3 }} = \dfrac{2}{{\sqrt 3 }}$
Therefore, after evaluating $\dfrac{{\sec \theta \cos ec\left( {{{90}^ \circ } - \theta } \right) - \tan \theta \cot \left( {{{90}^ \circ } - \theta } \right) + {{\sin }^2}{{55}^ \circ } + {{\sin }^2}{{35}^ \circ }}}{{\tan {{10}^ \circ }\tan {{20}^ \circ }\tan {{60}^ \circ }\tan {{70}^ \circ }\tan {{80}^ \circ }}}$we got $\dfrac{2}{{\sqrt 3 }}$
So, the correct answer is “Option B”.
Note: In the above solution we used the trigonometric identities which are the expressions which involve trigonometric functions where the term “function” can be explained as relation between the provided inputs and the outputs of the given inputs such that each input is directly related to the one output. The representation of a function is given by supposing if there is a function “f” that belongs from X to Y then the function is represented by $f:X \to Y$ examples of function are one-one functions, onto functions, bijective functions, trigonometric function, binary function, etc.
Complete step-by-step answer:
We have to evaluate so let I = $\dfrac{{\sec \theta \cos ec\left( {{{90}^ \circ } - \theta } \right) - \tan \theta \cot \left( {{{90}^ \circ } - \theta } \right) + {{\sin }^2}{{55}^ \circ } + {{\sin }^2}{{35}^ \circ }}}{{\tan {{10}^ \circ }\tan {{20}^ \circ }\tan {{60}^ \circ }\tan {{70}^ \circ }\tan {{80}^ \circ }}}$
Since we know that, $\cos ec\left( {{{90}^ \circ } - \theta } \right) = \sec \theta $, $\cot \left( {{{90}^ \circ } - \theta } \right) = \tan \theta $, $\tan \left( {{{90}^ \circ } - \theta } \right) = \cot \theta $ and $\cot \theta = \dfrac{1}{{\tan \theta }}$
Therefore, I = $\dfrac{{\sec \theta \left( {\sec \theta } \right) - \tan \theta \left( {\tan \theta } \right) + {{\sin }^2}{{55}^ \circ } + {{\cos }^2}{{55}^ \circ }}}{{\tan {{10}^ \circ }\tan \left( {{{90}^ \circ } - {{80}^ \circ }} \right)\tan {{20}^ \circ }\tan \left( {{{90}^ \circ } - {{70}^ \circ }} \right)\tan {{60}^ \circ }}}$
Now simplifying the above equation, we get
$ \Rightarrow $I $ = \dfrac{{\left( {\sec \theta \times \sec \theta } \right) - \left( {\tan \theta \times \tan \theta } \right) + {{\sin }^2}{{55}^ \circ } + {{\cos }^2}{{55}^ \circ }}}{{\tan {{10}^ \circ }\cot {{10}^ \circ }\tan {{20}^ \circ }\cot {{20}^ \circ }\tan {{60}^ \circ }}}$
As we know that $\cot \theta = \dfrac{1}{{\tan \theta }}$
So, I $ = \dfrac{{\left( {\sec \theta \times \sec \theta } \right) - \left( {\tan \theta \times \tan \theta } \right) + {{\sin }^2}{{55}^ \circ } + {{\cos }^2}{{55}^ \circ }}}{{\tan {{10}^ \circ }\dfrac{1}{{\tan {{10}^ \circ }}}\tan {{20}^ \circ }\dfrac{1}{{\tan {{20}^ \circ }}}\tan {{60}^ \circ }}}$
Simplifying again the above equation we get
I \[ = \dfrac{{\left( {{{\sec }^2}\theta - {{\tan }^2}\theta } \right) + {{\sin }^2}{{55}^ \circ } + {{\cos }^2}{{55}^ \circ }}}{{\tan {{60}^ \circ }}}\]
Now we know that \[\left( {{{\sec }^2}\theta - {{\tan }^2}\theta } \right) = 1\], \[\left( {{{\sin }^2}\theta + {{\cos }^2}\theta } \right) = 1\] and the value of $\tan {60^ \circ } = \sqrt 3 $
After substituting the value in the above equation, we get
I $ = \dfrac{{1 + 1}}{{\sqrt 3 }} = \dfrac{2}{{\sqrt 3 }}$
Therefore, after evaluating $\dfrac{{\sec \theta \cos ec\left( {{{90}^ \circ } - \theta } \right) - \tan \theta \cot \left( {{{90}^ \circ } - \theta } \right) + {{\sin }^2}{{55}^ \circ } + {{\sin }^2}{{35}^ \circ }}}{{\tan {{10}^ \circ }\tan {{20}^ \circ }\tan {{60}^ \circ }\tan {{70}^ \circ }\tan {{80}^ \circ }}}$we got $\dfrac{2}{{\sqrt 3 }}$
So, the correct answer is “Option B”.
Note: In the above solution we used the trigonometric identities which are the expressions which involve trigonometric functions where the term “function” can be explained as relation between the provided inputs and the outputs of the given inputs such that each input is directly related to the one output. The representation of a function is given by supposing if there is a function “f” that belongs from X to Y then the function is represented by $f:X \to Y$ examples of function are one-one functions, onto functions, bijective functions, trigonometric function, binary function, etc.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

