
Evaluate \[\dfrac{{{8^{ - 1}} \times {5^3}}}{{{2^{ - 4}}}}\].
Answer
497.1k+ views
Hint: We need to evaluate \[\dfrac{{{8^{ - 1}} \times {5^3}}}{{{2^{ - 4}}}}\].. We will use the properties, \[{a^{ - n}} = \dfrac{1}{{{a^n}}}\] , \[a \div b = \dfrac{a}{b}\], \[a \div b = a \times \dfrac{1}{b}\]and \[\dfrac{1}{{\dfrac{a}{b}}} = \dfrac{b}{a}\]. Using these properties, we will first simplify the numerator and then denominator. After individually simplifying numerator and denominator, we will write them as a fraction and then simplify further.
Complete step by step answer:
We need to simplify \[\dfrac{{{8^{ - 1}} \times {5^3}}}{{{2^{ - 4}}}}\].
First simplifying the numerator \[{8^{ - 1}} \times {5^3}\] using\[{a^{ - n}} = \dfrac{1}{{{a^n}}}\], we get
\[ \Rightarrow {8^{ - 1}} \times {5^3} = \dfrac{1}{8} \times {5^3}\]
Also, \[{a^3} = a \times a \times a\]. Using this, we have
\[ \Rightarrow {8^{ - 1}} \times {5^3} = \dfrac{1}{8} \times 5 \times 5 \times 5\]
Writing \[a = \dfrac{a}{1}\], we get
\[ \Rightarrow {8^{ - 1}} \times {5^3} = \dfrac{1}{8} \times 5 \times 5 \times 5 = \dfrac{1}{8} \times \dfrac{5}{1} \times \dfrac{5}{1} \times \dfrac{5}{1}\]
Now, Solving numerator and denominator
\[ \Rightarrow {8^{ - 1}} \times {5^3} = \dfrac{1}{8} \times 5 \times 5 \times 5 = \dfrac{1}{8} \times \dfrac{5}{1} \times \dfrac{5}{1} \times \dfrac{5}{1}\]
\[\Rightarrow {8^{ - 1}} \times {5^3} = \dfrac{{125}}{8}\]
Hence, we got numerator \[{8^{ - 1}} \times {5^3} = \dfrac{{125}}{8} - - - - - - (1)\]
Now solving the denominator \[{2^{ - 4}}\] using \[{a^{ - n}} = \dfrac{1}{{{a^n}}}\], we get
\[{2^{ - 4}} = \dfrac{1}{{{2^4}}}\]
Now using \[{a^n} = \underbrace {a \times a \times a \times ....... \times a}_{(n)times}\], we have
\[ \Rightarrow \dfrac{1}{{{2^4}}} = \dfrac{1}{{2 \times 2 \times 2 \times 2}}\]
\[\Rightarrow \dfrac{1}{{{2^4}}} = \dfrac{1}{{16}}\]
Hence, we got denominator \[{2^{ - 4}} = \dfrac{1}{{16}} - - - - - - (2)\]
Now, from (1) and (2)
\[\dfrac{{{8^{ - 1}} \times {5^3}}}{{{2^{ - 4}}}} = \dfrac{{\dfrac{{125}}{8}}}{{\dfrac{1}{{16}}}}\]
Using \[\dfrac{a}{b} = a \div b\], we have
\[ \Rightarrow \dfrac{{{8^{ - 1}} \times {5^3}}}{{{2^{ - 4}}}} = \dfrac{{\dfrac{{125}}{8}}}{{\dfrac{1}{{16}}}} \\
\Rightarrow \dfrac{{{8^{ - 1}} \times {5^3}}}{{{2^{ - 4}}}}= \dfrac{{125}}{8} \div \dfrac{1}{{16}}\]
Now using \[a \div b = a \times \dfrac{1}{b}\] and \[\dfrac{1}{{\dfrac{a}{b}}} = \dfrac{b}{a}\], we have
\[ \Rightarrow \dfrac{{{8^{ - 1}} \times {5^3}}}{{{2^{ - 4}}}} = \dfrac{{\dfrac{{125}}{8}}}{{\dfrac{1}{{16}}}} \\
\Rightarrow \dfrac{{{8^{ - 1}} \times {5^3}}}{{{2^{ - 4}}}}= \dfrac{{125}}{8} \div \dfrac{1}{{16}}\]
\[\Rightarrow \dfrac{{{8^{ - 1}} \times {5^3}}}{{{2^{ - 4}}}} = \dfrac{{125}}{8} \times \dfrac{1}{{\dfrac{1}{{16}}}}\]
\[ \Rightarrow \dfrac{{{8^{ - 1}} \times {5^3}}}{{{2^{ - 4}}}}= \dfrac{{125}}{8} \times \dfrac{{16}}{1}\]
After cancelling out the terms from numerator and denominator, we have
\[ \Rightarrow \dfrac{{{8^{ - 1}} \times {5^3}}}{{{2^{ - 4}}}} = \dfrac{{125}}{1} \times \dfrac{2}{1}\]
Solving the numerator and denominator, we have
\[ \Rightarrow \dfrac{{{8^{ - 1}} \times {5^3}}}{{{2^{ - 4}}}} = \dfrac{{125 \times 2}}{{1 \times 1}} = \dfrac{{250}}{1}\]
\[ \therefore \dfrac{{{8^{ - 1}} \times {5^3}}}{{{2^{ - 4}}}} = 250\]
Hence, the value of \[\dfrac{{{8^{ - 1}} \times {5^3}}}{{{2^{ - 4}}}}\] is 250.
Note: We could have solved the numerator and denominator simultaneously also. When we solve fractions in fraction, we usually get confused with the terms that whether they should be in numerator or denominator. We need to be careful while we are solving and so its better to write the fraction $\dfrac{a}{b}$ as $a\div b$ and then solve. While we are cancelling the terms, we should keep in mind that the term is cancelled only once and not twice.
Complete step by step answer:
We need to simplify \[\dfrac{{{8^{ - 1}} \times {5^3}}}{{{2^{ - 4}}}}\].
First simplifying the numerator \[{8^{ - 1}} \times {5^3}\] using\[{a^{ - n}} = \dfrac{1}{{{a^n}}}\], we get
\[ \Rightarrow {8^{ - 1}} \times {5^3} = \dfrac{1}{8} \times {5^3}\]
Also, \[{a^3} = a \times a \times a\]. Using this, we have
\[ \Rightarrow {8^{ - 1}} \times {5^3} = \dfrac{1}{8} \times 5 \times 5 \times 5\]
Writing \[a = \dfrac{a}{1}\], we get
\[ \Rightarrow {8^{ - 1}} \times {5^3} = \dfrac{1}{8} \times 5 \times 5 \times 5 = \dfrac{1}{8} \times \dfrac{5}{1} \times \dfrac{5}{1} \times \dfrac{5}{1}\]
Now, Solving numerator and denominator
\[ \Rightarrow {8^{ - 1}} \times {5^3} = \dfrac{1}{8} \times 5 \times 5 \times 5 = \dfrac{1}{8} \times \dfrac{5}{1} \times \dfrac{5}{1} \times \dfrac{5}{1}\]
\[\Rightarrow {8^{ - 1}} \times {5^3} = \dfrac{{125}}{8}\]
Hence, we got numerator \[{8^{ - 1}} \times {5^3} = \dfrac{{125}}{8} - - - - - - (1)\]
Now solving the denominator \[{2^{ - 4}}\] using \[{a^{ - n}} = \dfrac{1}{{{a^n}}}\], we get
\[{2^{ - 4}} = \dfrac{1}{{{2^4}}}\]
Now using \[{a^n} = \underbrace {a \times a \times a \times ....... \times a}_{(n)times}\], we have
\[ \Rightarrow \dfrac{1}{{{2^4}}} = \dfrac{1}{{2 \times 2 \times 2 \times 2}}\]
\[\Rightarrow \dfrac{1}{{{2^4}}} = \dfrac{1}{{16}}\]
Hence, we got denominator \[{2^{ - 4}} = \dfrac{1}{{16}} - - - - - - (2)\]
Now, from (1) and (2)
\[\dfrac{{{8^{ - 1}} \times {5^3}}}{{{2^{ - 4}}}} = \dfrac{{\dfrac{{125}}{8}}}{{\dfrac{1}{{16}}}}\]
Using \[\dfrac{a}{b} = a \div b\], we have
\[ \Rightarrow \dfrac{{{8^{ - 1}} \times {5^3}}}{{{2^{ - 4}}}} = \dfrac{{\dfrac{{125}}{8}}}{{\dfrac{1}{{16}}}} \\
\Rightarrow \dfrac{{{8^{ - 1}} \times {5^3}}}{{{2^{ - 4}}}}= \dfrac{{125}}{8} \div \dfrac{1}{{16}}\]
Now using \[a \div b = a \times \dfrac{1}{b}\] and \[\dfrac{1}{{\dfrac{a}{b}}} = \dfrac{b}{a}\], we have
\[ \Rightarrow \dfrac{{{8^{ - 1}} \times {5^3}}}{{{2^{ - 4}}}} = \dfrac{{\dfrac{{125}}{8}}}{{\dfrac{1}{{16}}}} \\
\Rightarrow \dfrac{{{8^{ - 1}} \times {5^3}}}{{{2^{ - 4}}}}= \dfrac{{125}}{8} \div \dfrac{1}{{16}}\]
\[\Rightarrow \dfrac{{{8^{ - 1}} \times {5^3}}}{{{2^{ - 4}}}} = \dfrac{{125}}{8} \times \dfrac{1}{{\dfrac{1}{{16}}}}\]
\[ \Rightarrow \dfrac{{{8^{ - 1}} \times {5^3}}}{{{2^{ - 4}}}}= \dfrac{{125}}{8} \times \dfrac{{16}}{1}\]
After cancelling out the terms from numerator and denominator, we have
\[ \Rightarrow \dfrac{{{8^{ - 1}} \times {5^3}}}{{{2^{ - 4}}}} = \dfrac{{125}}{1} \times \dfrac{2}{1}\]
Solving the numerator and denominator, we have
\[ \Rightarrow \dfrac{{{8^{ - 1}} \times {5^3}}}{{{2^{ - 4}}}} = \dfrac{{125 \times 2}}{{1 \times 1}} = \dfrac{{250}}{1}\]
\[ \therefore \dfrac{{{8^{ - 1}} \times {5^3}}}{{{2^{ - 4}}}} = 250\]
Hence, the value of \[\dfrac{{{8^{ - 1}} \times {5^3}}}{{{2^{ - 4}}}}\] is 250.
Note: We could have solved the numerator and denominator simultaneously also. When we solve fractions in fraction, we usually get confused with the terms that whether they should be in numerator or denominator. We need to be careful while we are solving and so its better to write the fraction $\dfrac{a}{b}$ as $a\div b$ and then solve. While we are cancelling the terms, we should keep in mind that the term is cancelled only once and not twice.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
What is BLO What is the full form of BLO class 8 social science CBSE

Citizens of India can vote at the age of A 18 years class 8 social science CBSE

Full form of STD, ISD and PCO

Convert 40circ C to Fahrenheit A 104circ F B 107circ class 8 maths CBSE

Advantages and disadvantages of science

Right to vote is a AFundamental Right BFundamental class 8 social science CBSE


