
Evaluate cos$3\pi$.
Answer
541.2k+ views
Hint: We start to solve the problem by writing $\cos 3\pi $ as $cos\left( 2\pi +\pi \right)$ .We simplify $cos\left( 2\pi +\pi \right)$ by using $cos\left( A+B \right)=cosAcosB-sinAsinB$ formula in trigonometry. We need to substitute the values of required trigonometric functions at angles $\pi $ and $2\pi $ to get the value of $\cos 3\pi $
Complete step by step answer:
In the given question,
We need to evaluate $\cos 3\pi$
$\cos 3\pi$ can be also written as $\cos \left( \pi +2\pi \right)$
The expression $\cos \left( \pi +2\pi \right)$ resembles the expression $cos\left( A+B \right)$
The formula of $cos\left( A+B \right)$ is given by
$cos\left( A+B \right)=cosAcosB-sinAsinB$
Upon substituting we get,
$\Rightarrow cos\left( 2\pi +\pi \right)=cos2\pi .cos\pi - sin2\pi .sin\pi$
Let us now find the value of $\cos \pi$
$\Rightarrow cos\pi =cos\left( \dfrac{\pi }{2}+\dfrac{\pi }{2} \right)$
The value of $cos\left( \dfrac{\pi }{2}+\dfrac{\pi }{2} \right)$ falls into the second quadrant. The value of cosine function in the second quadrant is negative.
$\Rightarrow cos\left( 90+x \right)=-sinx$
$\Rightarrow cos\pi =-sin\left( \dfrac{\pi }{2} \right)$
$\Rightarrow cos\pi =-1$
Let us now find the value of $\cos 2\pi$
$\Rightarrow cos2\pi =cos\left( \pi +\pi \right)$
The value of $cos\left( \pi +\pi \right)$ falls into the third quadrant. The value of cosine function in the third quadrant is negative.
$\Rightarrow cos2\pi =-cos\pi$
$\Rightarrow cos2\pi =-\left( -1 \right)=1$
Let us now find the value of $\sin \pi$
$\Rightarrow \sin \pi =\sin \left( \dfrac{\pi }{2}+\dfrac{\pi }{2} \right)$
The value of $\sin \left( \dfrac{\pi }{2}+\dfrac{\pi }{2} \right)$ falls into the second quadrant. The value of cosine function in the second quadrant is positive
$\Rightarrow \sin \left( 90+x \right)=\cos x$
$\Rightarrow \sin \pi =\cos \left( \dfrac{\pi }{2} \right)$
$\Rightarrow \sin \pi =0$
Let us now find the value of $\sin 2\pi$
$\Rightarrow \sin 2\pi =\sin \left( \pi +\pi \right)$
The value of $\sin \left( \pi +\pi \right)$ falls into the third quadrant. The value of cosine function in the third quadrant is negative.
$\Rightarrow \sin 2\pi =-\sin \pi$
$\Rightarrow \sin 2\pi =-\left( -0 \right)=0$
Substituting the above values in $cos\left( 2\pi +\pi \right)$ , we get,
$\Rightarrow cos\left( 2\pi +\pi \right)=cos2\pi .cos\pi - sin2\pi .sin\pi$
$\Rightarrow cos\left( 2\pi +\pi \right)=\left( 1 \right)\times \left( -1 \right) - 0\times 0$
$\Rightarrow cos\left( 2\pi +\pi \right)=-1$
Hence, the value of $\cos 3\pi$ is equal to -1.
Note: The given question can also be solved using the periodicity of the cosine function. The period of the cosine function is $\pi$ and the values oscillate between +1 and -1 for each period. The graph of cos function at $3\pi$ is below x-axis so the value of $cos\left( 3\pi \right)=-1.$
Must check where the Trigonometric functions become negative in which Quadrant to easily find the values in the given range. Convert the entire Trigonometric equation in either $\cos x$ or $\sin x$ to easily solve the entire expression.
Complete step by step answer:
In the given question,
We need to evaluate $\cos 3\pi$
$\cos 3\pi$ can be also written as $\cos \left( \pi +2\pi \right)$
The expression $\cos \left( \pi +2\pi \right)$ resembles the expression $cos\left( A+B \right)$
The formula of $cos\left( A+B \right)$ is given by
$cos\left( A+B \right)=cosAcosB-sinAsinB$
Upon substituting we get,
$\Rightarrow cos\left( 2\pi +\pi \right)=cos2\pi .cos\pi - sin2\pi .sin\pi$
Let us now find the value of $\cos \pi$
$\Rightarrow cos\pi =cos\left( \dfrac{\pi }{2}+\dfrac{\pi }{2} \right)$
The value of $cos\left( \dfrac{\pi }{2}+\dfrac{\pi }{2} \right)$ falls into the second quadrant. The value of cosine function in the second quadrant is negative.
$\Rightarrow cos\left( 90+x \right)=-sinx$
$\Rightarrow cos\pi =-sin\left( \dfrac{\pi }{2} \right)$
$\Rightarrow cos\pi =-1$
Let us now find the value of $\cos 2\pi$
$\Rightarrow cos2\pi =cos\left( \pi +\pi \right)$
The value of $cos\left( \pi +\pi \right)$ falls into the third quadrant. The value of cosine function in the third quadrant is negative.
$\Rightarrow cos2\pi =-cos\pi$
$\Rightarrow cos2\pi =-\left( -1 \right)=1$
Let us now find the value of $\sin \pi$
$\Rightarrow \sin \pi =\sin \left( \dfrac{\pi }{2}+\dfrac{\pi }{2} \right)$
The value of $\sin \left( \dfrac{\pi }{2}+\dfrac{\pi }{2} \right)$ falls into the second quadrant. The value of cosine function in the second quadrant is positive
$\Rightarrow \sin \left( 90+x \right)=\cos x$
$\Rightarrow \sin \pi =\cos \left( \dfrac{\pi }{2} \right)$
$\Rightarrow \sin \pi =0$
Let us now find the value of $\sin 2\pi$
$\Rightarrow \sin 2\pi =\sin \left( \pi +\pi \right)$
The value of $\sin \left( \pi +\pi \right)$ falls into the third quadrant. The value of cosine function in the third quadrant is negative.
$\Rightarrow \sin 2\pi =-\sin \pi$
$\Rightarrow \sin 2\pi =-\left( -0 \right)=0$
Substituting the above values in $cos\left( 2\pi +\pi \right)$ , we get,
$\Rightarrow cos\left( 2\pi +\pi \right)=cos2\pi .cos\pi - sin2\pi .sin\pi$
$\Rightarrow cos\left( 2\pi +\pi \right)=\left( 1 \right)\times \left( -1 \right) - 0\times 0$
$\Rightarrow cos\left( 2\pi +\pi \right)=-1$
Hence, the value of $\cos 3\pi$ is equal to -1.
Note: The given question can also be solved using the periodicity of the cosine function. The period of the cosine function is $\pi$ and the values oscillate between +1 and -1 for each period. The graph of cos function at $3\pi$ is below x-axis so the value of $cos\left( 3\pi \right)=-1.$
Must check where the Trigonometric functions become negative in which Quadrant to easily find the values in the given range. Convert the entire Trigonometric equation in either $\cos x$ or $\sin x$ to easily solve the entire expression.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

The draft of the Preamble of the Indian Constitution class 10 social science CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who gave "Inqilab Zindabad" slogan?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Who is the Brand Ambassador of Incredible India?

