
Evaluate cos$3\pi$.
Answer
527.7k+ views
Hint: We start to solve the problem by writing $\cos 3\pi $ as $cos\left( 2\pi +\pi \right)$ .We simplify $cos\left( 2\pi +\pi \right)$ by using $cos\left( A+B \right)=cosAcosB-sinAsinB$ formula in trigonometry. We need to substitute the values of required trigonometric functions at angles $\pi $ and $2\pi $ to get the value of $\cos 3\pi $
Complete step by step answer:
In the given question,
We need to evaluate $\cos 3\pi$
$\cos 3\pi$ can be also written as $\cos \left( \pi +2\pi \right)$
The expression $\cos \left( \pi +2\pi \right)$ resembles the expression $cos\left( A+B \right)$
The formula of $cos\left( A+B \right)$ is given by
$cos\left( A+B \right)=cosAcosB-sinAsinB$
Upon substituting we get,
$\Rightarrow cos\left( 2\pi +\pi \right)=cos2\pi .cos\pi - sin2\pi .sin\pi$
Let us now find the value of $\cos \pi$
$\Rightarrow cos\pi =cos\left( \dfrac{\pi }{2}+\dfrac{\pi }{2} \right)$
The value of $cos\left( \dfrac{\pi }{2}+\dfrac{\pi }{2} \right)$ falls into the second quadrant. The value of cosine function in the second quadrant is negative.
$\Rightarrow cos\left( 90+x \right)=-sinx$
$\Rightarrow cos\pi =-sin\left( \dfrac{\pi }{2} \right)$
$\Rightarrow cos\pi =-1$
Let us now find the value of $\cos 2\pi$
$\Rightarrow cos2\pi =cos\left( \pi +\pi \right)$
The value of $cos\left( \pi +\pi \right)$ falls into the third quadrant. The value of cosine function in the third quadrant is negative.
$\Rightarrow cos2\pi =-cos\pi$
$\Rightarrow cos2\pi =-\left( -1 \right)=1$
Let us now find the value of $\sin \pi$
$\Rightarrow \sin \pi =\sin \left( \dfrac{\pi }{2}+\dfrac{\pi }{2} \right)$
The value of $\sin \left( \dfrac{\pi }{2}+\dfrac{\pi }{2} \right)$ falls into the second quadrant. The value of cosine function in the second quadrant is positive
$\Rightarrow \sin \left( 90+x \right)=\cos x$
$\Rightarrow \sin \pi =\cos \left( \dfrac{\pi }{2} \right)$
$\Rightarrow \sin \pi =0$
Let us now find the value of $\sin 2\pi$
$\Rightarrow \sin 2\pi =\sin \left( \pi +\pi \right)$
The value of $\sin \left( \pi +\pi \right)$ falls into the third quadrant. The value of cosine function in the third quadrant is negative.
$\Rightarrow \sin 2\pi =-\sin \pi$
$\Rightarrow \sin 2\pi =-\left( -0 \right)=0$
Substituting the above values in $cos\left( 2\pi +\pi \right)$ , we get,
$\Rightarrow cos\left( 2\pi +\pi \right)=cos2\pi .cos\pi - sin2\pi .sin\pi$
$\Rightarrow cos\left( 2\pi +\pi \right)=\left( 1 \right)\times \left( -1 \right) - 0\times 0$
$\Rightarrow cos\left( 2\pi +\pi \right)=-1$
Hence, the value of $\cos 3\pi$ is equal to -1.
Note: The given question can also be solved using the periodicity of the cosine function. The period of the cosine function is $\pi$ and the values oscillate between +1 and -1 for each period. The graph of cos function at $3\pi$ is below x-axis so the value of $cos\left( 3\pi \right)=-1.$
Must check where the Trigonometric functions become negative in which Quadrant to easily find the values in the given range. Convert the entire Trigonometric equation in either $\cos x$ or $\sin x$ to easily solve the entire expression.
Complete step by step answer:
In the given question,
We need to evaluate $\cos 3\pi$
$\cos 3\pi$ can be also written as $\cos \left( \pi +2\pi \right)$
The expression $\cos \left( \pi +2\pi \right)$ resembles the expression $cos\left( A+B \right)$
The formula of $cos\left( A+B \right)$ is given by
$cos\left( A+B \right)=cosAcosB-sinAsinB$
Upon substituting we get,
$\Rightarrow cos\left( 2\pi +\pi \right)=cos2\pi .cos\pi - sin2\pi .sin\pi$
Let us now find the value of $\cos \pi$
$\Rightarrow cos\pi =cos\left( \dfrac{\pi }{2}+\dfrac{\pi }{2} \right)$
The value of $cos\left( \dfrac{\pi }{2}+\dfrac{\pi }{2} \right)$ falls into the second quadrant. The value of cosine function in the second quadrant is negative.
$\Rightarrow cos\left( 90+x \right)=-sinx$
$\Rightarrow cos\pi =-sin\left( \dfrac{\pi }{2} \right)$
$\Rightarrow cos\pi =-1$
Let us now find the value of $\cos 2\pi$
$\Rightarrow cos2\pi =cos\left( \pi +\pi \right)$
The value of $cos\left( \pi +\pi \right)$ falls into the third quadrant. The value of cosine function in the third quadrant is negative.
$\Rightarrow cos2\pi =-cos\pi$
$\Rightarrow cos2\pi =-\left( -1 \right)=1$
Let us now find the value of $\sin \pi$
$\Rightarrow \sin \pi =\sin \left( \dfrac{\pi }{2}+\dfrac{\pi }{2} \right)$
The value of $\sin \left( \dfrac{\pi }{2}+\dfrac{\pi }{2} \right)$ falls into the second quadrant. The value of cosine function in the second quadrant is positive
$\Rightarrow \sin \left( 90+x \right)=\cos x$
$\Rightarrow \sin \pi =\cos \left( \dfrac{\pi }{2} \right)$
$\Rightarrow \sin \pi =0$
Let us now find the value of $\sin 2\pi$
$\Rightarrow \sin 2\pi =\sin \left( \pi +\pi \right)$
The value of $\sin \left( \pi +\pi \right)$ falls into the third quadrant. The value of cosine function in the third quadrant is negative.
$\Rightarrow \sin 2\pi =-\sin \pi$
$\Rightarrow \sin 2\pi =-\left( -0 \right)=0$
Substituting the above values in $cos\left( 2\pi +\pi \right)$ , we get,
$\Rightarrow cos\left( 2\pi +\pi \right)=cos2\pi .cos\pi - sin2\pi .sin\pi$
$\Rightarrow cos\left( 2\pi +\pi \right)=\left( 1 \right)\times \left( -1 \right) - 0\times 0$
$\Rightarrow cos\left( 2\pi +\pi \right)=-1$
Hence, the value of $\cos 3\pi$ is equal to -1.
Note: The given question can also be solved using the periodicity of the cosine function. The period of the cosine function is $\pi$ and the values oscillate between +1 and -1 for each period. The graph of cos function at $3\pi$ is below x-axis so the value of $cos\left( 3\pi \right)=-1.$
Must check where the Trigonometric functions become negative in which Quadrant to easily find the values in the given range. Convert the entire Trigonometric equation in either $\cos x$ or $\sin x$ to easily solve the entire expression.
Recently Updated Pages
Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
Which of the following does not have a fundamental class 10 physics CBSE

10 examples of evaporation in daily life with explanations

State and prove the Pythagoras theorem-class-10-maths-CBSE

State BPT theorem and prove it class 10 maths CBSE

What is UltraEdge (Snickometer) used for in cricket?

What are the public facilities provided by the government? Also explain each facility

