
Evaluate $\cos \left( {{{\tan }^{ - 1}}x} \right) = $
1). $\sqrt {1 + {x^2}} $
2). $\dfrac{1}{{\sqrt {1 + {x^2}} }}$
3). $1 + {x^2}$
4). None of these
Answer
497.4k+ views
Hint: In order to solve the given equation, consider ${\tan ^{ - 1}}x$ to be any variable, then using the properties of triangles like Pythagoras theorem and trigonometric ratios like $\tan \theta = \dfrac{{perpendicular}}{{base}}$, find the value of the variable, solve further and get the results.
Formula used:
$\tan \theta = \dfrac{{perpendicular}}{{base}}$
$\cos \theta = \dfrac{{base}}{{hypotenuse}}$
Complete step-by-step solution:
We are given the value $\cos \left( {{{\tan }^{ - 1}}x} \right)$.
Considering the value of ${\tan ^{ - 1}}x$ to be $\theta $ , which can be numerically written as:
${\tan ^{ - 1}}x = \theta $
Multiplying both the sides by $\tan $, we get:
$\tan \left( {{{\tan }^{ - 1}}x} \right) = \tan \theta $ ……………………..(1)
Since, we know that in $\tan \left( {{{\tan }^{ - 1}}x} \right) = \tan \theta $, the $\tan $ will cancel ${\tan ^{ - 1}}x$, so we are left with $\tan \left( {{{\tan }^{ - 1}}x} \right) = x$, So substituting this value in equation (1), we get:
$\tan \left( {{{\tan }^{ - 1}}x} \right) = \tan \theta $
$ \Rightarrow x = \tan \theta $
Which can also be written as:
$ \Rightarrow \tan \theta = x$ …………………………..(2)
From Trigonometric ratios, we know that:
$ \Rightarrow \tan \theta = \dfrac{{perpendicular}}{{base}}$ ……..(3)
Equating equation (2) and equation (3), we get:
$ \Rightarrow x = \dfrac{{perpendicular}}{{base}}$
$x$ can also be written as $\dfrac{x}{1}$, as anything divided by $1$ , gives the same answer:
Therefore,
$ \Rightarrow \dfrac{x}{1} = \dfrac{{perpendicular}}{{base}}$
Drawing a right-angled triangle ABC with perpendicular of $x$ and base to be $1$, perpendicular to each other at B:
Since, it is a right - angled triangle, so we can apply Pythagoras theorem:
$A{B^2} + B{C^2} = A{C^2}$
Substituting the values, we get:
$ \Rightarrow {x^2} + {1^2} = A{C^2}$
Taking square root both the sides, we get:
$ \Rightarrow \sqrt {{x^2} + {1^2}} = \sqrt {A{C^2}} $
$ \Rightarrow \sqrt {{x^2} + 1} = AC$
$ \Rightarrow AC = \sqrt {{x^2} + 1} $
Therefore, hypotenuse $ = \sqrt {{x^2} + 1} $.
Since, we were given $\cos \left( {{{\tan }^{ - 1}}x} \right)$, and we considered ${\tan ^{ - 1}}x = \theta $, so substituting ${\tan ^{ - 1}}x = \theta $ in $\cos \left( {{{\tan }^{ - 1}}x} \right)$, we get:
$ \Rightarrow \cos \left( {{{\tan }^{ - 1}}x} \right) = \cos \left( \theta \right)$
$ \Rightarrow \cos \left( {{{\tan }^{ - 1}}x} \right) = \cos \theta $ …….(4)
From Trigonometric ratios, we know that $\cos \theta = \dfrac{{base}}{{hypotenuse}}$.
And, we can see from the triangle ABC, base $ = 1$ and hypotenuse $ = \sqrt {{x^2} + 1} $.
Substituting them in $\cos \theta = \dfrac{{base}}{{hypotenuse}}$ , we get:
$\cos \theta = \dfrac{{base}}{{hypotenuse}} = \dfrac{1}{{\sqrt {{x^2} + 1} }}$
$ \Rightarrow \cos \theta = \dfrac{1}{{\sqrt {{x^2} + 1} }}$
Substituting this value in equation (4), we get:
$ \Rightarrow \cos \left( {{{\tan }^{ - 1}}x} \right) = \cos \theta = \dfrac{1}{{\sqrt {{x^2} + 1} }}$
$ \Rightarrow \cos \left( {{{\tan }^{ - 1}}x} \right) = \dfrac{1}{{\sqrt {{x^2} + 1} }}$
Therefore, $\cos \left( {{{\tan }^{ - 1}}x} \right) = \dfrac{1}{{\sqrt {{x^2} + 1} }}$.
Hence, Option 2 is correct.
Note: It’s important to follow the correct steps and solve step by step instead of solving it at once, otherwise it may lead to error. Do not forget to draw the rough diagram of the triangle in order to get the value of the hypotenuse.
Formula used:
$\tan \theta = \dfrac{{perpendicular}}{{base}}$
$\cos \theta = \dfrac{{base}}{{hypotenuse}}$
Complete step-by-step solution:
We are given the value $\cos \left( {{{\tan }^{ - 1}}x} \right)$.
Considering the value of ${\tan ^{ - 1}}x$ to be $\theta $ , which can be numerically written as:
${\tan ^{ - 1}}x = \theta $
Multiplying both the sides by $\tan $, we get:
$\tan \left( {{{\tan }^{ - 1}}x} \right) = \tan \theta $ ……………………..(1)
Since, we know that in $\tan \left( {{{\tan }^{ - 1}}x} \right) = \tan \theta $, the $\tan $ will cancel ${\tan ^{ - 1}}x$, so we are left with $\tan \left( {{{\tan }^{ - 1}}x} \right) = x$, So substituting this value in equation (1), we get:
$\tan \left( {{{\tan }^{ - 1}}x} \right) = \tan \theta $
$ \Rightarrow x = \tan \theta $
Which can also be written as:
$ \Rightarrow \tan \theta = x$ …………………………..(2)
From Trigonometric ratios, we know that:
$ \Rightarrow \tan \theta = \dfrac{{perpendicular}}{{base}}$ ……..(3)
Equating equation (2) and equation (3), we get:
$ \Rightarrow x = \dfrac{{perpendicular}}{{base}}$
$x$ can also be written as $\dfrac{x}{1}$, as anything divided by $1$ , gives the same answer:
Therefore,
$ \Rightarrow \dfrac{x}{1} = \dfrac{{perpendicular}}{{base}}$
Drawing a right-angled triangle ABC with perpendicular of $x$ and base to be $1$, perpendicular to each other at B:
Since, it is a right - angled triangle, so we can apply Pythagoras theorem:
$A{B^2} + B{C^2} = A{C^2}$
Substituting the values, we get:
$ \Rightarrow {x^2} + {1^2} = A{C^2}$
Taking square root both the sides, we get:
$ \Rightarrow \sqrt {{x^2} + {1^2}} = \sqrt {A{C^2}} $
$ \Rightarrow \sqrt {{x^2} + 1} = AC$
$ \Rightarrow AC = \sqrt {{x^2} + 1} $
Therefore, hypotenuse $ = \sqrt {{x^2} + 1} $.
Since, we were given $\cos \left( {{{\tan }^{ - 1}}x} \right)$, and we considered ${\tan ^{ - 1}}x = \theta $, so substituting ${\tan ^{ - 1}}x = \theta $ in $\cos \left( {{{\tan }^{ - 1}}x} \right)$, we get:
$ \Rightarrow \cos \left( {{{\tan }^{ - 1}}x} \right) = \cos \left( \theta \right)$
$ \Rightarrow \cos \left( {{{\tan }^{ - 1}}x} \right) = \cos \theta $ …….(4)
From Trigonometric ratios, we know that $\cos \theta = \dfrac{{base}}{{hypotenuse}}$.
And, we can see from the triangle ABC, base $ = 1$ and hypotenuse $ = \sqrt {{x^2} + 1} $.
Substituting them in $\cos \theta = \dfrac{{base}}{{hypotenuse}}$ , we get:
$\cos \theta = \dfrac{{base}}{{hypotenuse}} = \dfrac{1}{{\sqrt {{x^2} + 1} }}$
$ \Rightarrow \cos \theta = \dfrac{1}{{\sqrt {{x^2} + 1} }}$
Substituting this value in equation (4), we get:
$ \Rightarrow \cos \left( {{{\tan }^{ - 1}}x} \right) = \cos \theta = \dfrac{1}{{\sqrt {{x^2} + 1} }}$
$ \Rightarrow \cos \left( {{{\tan }^{ - 1}}x} \right) = \dfrac{1}{{\sqrt {{x^2} + 1} }}$
Therefore, $\cos \left( {{{\tan }^{ - 1}}x} \right) = \dfrac{1}{{\sqrt {{x^2} + 1} }}$.
Hence, Option 2 is correct.
Note: It’s important to follow the correct steps and solve step by step instead of solving it at once, otherwise it may lead to error. Do not forget to draw the rough diagram of the triangle in order to get the value of the hypotenuse.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

Give 10 examples of unisexual and bisexual flowers

