
How do you evaluate $\cos \left( \dfrac{\pi }{7} \right)\cdot \cos \left( \dfrac{4\cdot \pi }{7} \right)\cdot \cos \left( \dfrac{5\cdot \pi }{7} \right)$?
Answer
548.1k+ views
Hint: If we want to solve the trigonometric identity$\cos \left( \dfrac{\pi }{7} \right)\cdot \cos \left( \dfrac{4\cdot \pi }{7} \right)\cdot \cos \left( \dfrac{5\cdot \pi }{7} \right)$then convert the given identity into simplified form. After we have converted the identity into the simplified form then divide \[2\sin \dfrac{\pi }{7}\]in the numerators and denominators to simplify the identity and reduce it.
Complete step by step solution:
We have our given identity that is $\cos \left( \dfrac{\pi }{7} \right)\cdot \cos \left( \dfrac{4\cdot \pi }{7} \right)\cdot \cos \left( \dfrac{5\cdot \pi }{7} \right)......\left( 1 \right)$.
We have to write the identity into the simplified form such that,
$\begin{align}
& \Rightarrow \cos \left( \dfrac{\pi }{7} \right)\cdot \cos \left( \dfrac{4\cdot \pi }{7} \right)\cdot \cos \left( \dfrac{5\cdot \pi }{7} \right) \\
& \Rightarrow \cos \dfrac{\pi }{7}\cdot \cos \dfrac{4\pi }{7}\cdot \cos \dfrac{5\pi }{7}......\left( 2 \right) \\
\end{align}$
Now, we have the identity in simplified form in identity (2). The \[\cos \dfrac{4\pi }{7}\]can be written as\[\cos \left( \pi -\dfrac{3\pi }{7} \right)\] and \[\cos \dfrac{4\pi }{7}\] can be written as$\cos \left( \pi -\dfrac{2\pi }{7} \right)$. The identities are converted in this form because it will be easier to solve.
$\begin{align}
& \Rightarrow \cos \dfrac{\pi }{7}\cdot \cos \dfrac{4\pi }{7}\cdot \cos \dfrac{5\pi }{7} \\
& \Rightarrow \cos \dfrac{\pi }{7}\cdot \cos \left( \pi -\dfrac{3\pi }{7} \right)\cdot \cos \left( \pi -\dfrac{2\pi }{7} \right).....\left( 3 \right) \\
\end{align}$
Now, we have obtained the identity (3). We know that \[\cos \left( \pi -\theta \right)\]is equal to\[\cos \theta \]. So apply it in the identity.
$\begin{align}
& \Rightarrow \cos \dfrac{\pi }{7}\cdot \cos \left( \pi -\dfrac{3\pi }{7} \right)\cdot \cos \left( \pi -\dfrac{2\pi }{7} \right) \\
& \Rightarrow \cos \dfrac{\pi }{7}\cdot \cos \dfrac{3\pi }{7}\cdot \cos \dfrac{2\pi }{7}.....\left( 4 \right) \\
\end{align}$
We should rearrange the cosines in the increasing order of their angle in identity (4).
$\begin{align}
& \Rightarrow \cos \dfrac{\pi }{7}\cdot \cos \dfrac{3\pi }{7}\cdot \cos \dfrac{2\pi }{7} \\
& \Rightarrow \cos \dfrac{\pi }{7}\cdot \cos \dfrac{2\pi }{7}\cdot \cos \dfrac{3\pi }{7}.....\left( 5 \right) \\
\end{align}$
Multiply \[2\sin \dfrac{\pi }{7}\] in the numerator and the denominator of the identity (5).
$\begin{align}
& \Rightarrow \dfrac{2\sin \dfrac{\pi }{7}}{2\sin \dfrac{\pi }{7}}\left( \cos \dfrac{\pi }{7}\cdot \cos \dfrac{2\pi }{7}\cdot \cos \dfrac{3\pi }{7} \right) \\
& \Rightarrow \dfrac{1}{2\sin \dfrac{\pi }{7}}\left( \left( 2\sin \dfrac{\pi }{7}\cos \dfrac{\pi }{7} \right)\cdot \cos \dfrac{2\pi }{7}\cdot \cos \dfrac{3\pi }{7} \right).....\left( 6 \right) \\
\end{align}$
Now, we know that the formula for\[2\sin x\cos x\]will be\[\sin 2x\]so applying this formula in identity (6), we get:
$\begin{align}
& \Rightarrow \dfrac{1}{2\sin \dfrac{\pi }{7}}\left( \left( \sin \dfrac{2\pi }{7} \right)\cdot \cos \dfrac{2\pi }{7}\cdot \cos \dfrac{3\pi }{7} \right) \\
& \Rightarrow \dfrac{1}{2\sin \dfrac{\pi }{7}}\left( \dfrac{1}{2}\left( 2\sin \dfrac{2\pi }{7}\cdot \cos \dfrac{2\pi }{7} \right)\cdot \cos \dfrac{3\pi }{7} \right).....\left( 7 \right) \\
\end{align}$
Now, applying the same formula in the identity (7) as explained in the above steps, we get:
$\begin{align}
& \Rightarrow \dfrac{1}{2\sin \dfrac{\pi }{7}}\left( \dfrac{1}{2}\left( 2\sin \dfrac{2\pi }{7}\cdot \cos \dfrac{2\pi }{7} \right)\cdot \cos \dfrac{3\pi }{7} \right) \\
& \Rightarrow \dfrac{1}{2\sin \dfrac{\pi }{7}}\left( \dfrac{1}{2}\left( \sin \dfrac{2\left( 2\pi \right)}{7} \right)\cdot \cos \dfrac{3\pi }{7} \right) \\
& \Rightarrow \dfrac{1}{2\sin \dfrac{\pi }{7}}\left( \dfrac{1}{2}\left( \sin \dfrac{4\pi }{7} \right)\cdot \cos \dfrac{3\pi }{7} \right) \\
& \Rightarrow \dfrac{1}{2\sin \dfrac{\pi }{7}}\left( \dfrac{1}{2}\cdot \dfrac{1}{2}\left( 2\sin \dfrac{4\pi }{7}\cdot \cos \dfrac{3\pi }{7} \right) \right)......\left( 8 \right) \\
\end{align}$
We know that \[\cos \dfrac{3\pi }{7}\] can also be written as \[\cos \left( \pi -\dfrac{4\pi }{7} \right)\] and we also know that \[\cos \left( \pi -\theta \right)\] is equal to \[\cos \theta \]. So applying this in the identity (8), we get:
$\begin{align}
& \Rightarrow \dfrac{1}{2\sin \dfrac{\pi }{7}}\left( \dfrac{1}{2}\cdot \dfrac{1}{2}\left( 2\sin \dfrac{4\pi }{7}\cdot \cos \dfrac{3\pi }{7} \right) \right) \\
& \Rightarrow \dfrac{1}{2\sin \dfrac{\pi }{7}}\left( \dfrac{1}{2}\cdot \dfrac{1}{2}\left( 2\sin \dfrac{4\pi }{7}\cdot \cos \left( \pi -\dfrac{4\pi }{7} \right) \right) \right) \\
& \Rightarrow \dfrac{1}{2\sin \dfrac{\pi }{7}}\left( \dfrac{1}{4}\left( 2\sin \dfrac{4\pi }{7}\cdot \cos \dfrac{4\pi }{7} \right) \right) \\
& \Rightarrow \dfrac{1}{2\sin \dfrac{\pi }{7}}\left( \dfrac{1}{4}\left( \sin \dfrac{8\pi }{7} \right) \right).....\left( 9 \right) \\
\end{align}$
As we know, \[\sin \left( \dfrac{8\pi }{7} \right)\] can also be written as \[\sin \left( \pi +\dfrac{\pi }{7} \right)\] and since \[\sin \left( \pi +x \right)=\sin x\], apply this in identity (9), we get:
$\begin{align}
& \Rightarrow \dfrac{1}{2\sin \dfrac{\pi }{7}}\left( \dfrac{1}{4}\left( \sin \left( \pi +\dfrac{\pi }{7} \right) \right) \right) \\
& \Rightarrow \dfrac{1}{8\sin \dfrac{\pi }{7}}\left( \sin \dfrac{\pi }{7} \right) \\
& \Rightarrow \dfrac{1}{8} \\
\end{align}$
Now, we have obtained the solution to the problem i.e. \[\dfrac{1}{8}\].
Note: We should always keep in mind that while solving a trigonometric problem, we should have learned all the formulas before solving the question. To solve trigonometry the main requirement is the formulas.
Complete step by step solution:
We have our given identity that is $\cos \left( \dfrac{\pi }{7} \right)\cdot \cos \left( \dfrac{4\cdot \pi }{7} \right)\cdot \cos \left( \dfrac{5\cdot \pi }{7} \right)......\left( 1 \right)$.
We have to write the identity into the simplified form such that,
$\begin{align}
& \Rightarrow \cos \left( \dfrac{\pi }{7} \right)\cdot \cos \left( \dfrac{4\cdot \pi }{7} \right)\cdot \cos \left( \dfrac{5\cdot \pi }{7} \right) \\
& \Rightarrow \cos \dfrac{\pi }{7}\cdot \cos \dfrac{4\pi }{7}\cdot \cos \dfrac{5\pi }{7}......\left( 2 \right) \\
\end{align}$
Now, we have the identity in simplified form in identity (2). The \[\cos \dfrac{4\pi }{7}\]can be written as\[\cos \left( \pi -\dfrac{3\pi }{7} \right)\] and \[\cos \dfrac{4\pi }{7}\] can be written as$\cos \left( \pi -\dfrac{2\pi }{7} \right)$. The identities are converted in this form because it will be easier to solve.
$\begin{align}
& \Rightarrow \cos \dfrac{\pi }{7}\cdot \cos \dfrac{4\pi }{7}\cdot \cos \dfrac{5\pi }{7} \\
& \Rightarrow \cos \dfrac{\pi }{7}\cdot \cos \left( \pi -\dfrac{3\pi }{7} \right)\cdot \cos \left( \pi -\dfrac{2\pi }{7} \right).....\left( 3 \right) \\
\end{align}$
Now, we have obtained the identity (3). We know that \[\cos \left( \pi -\theta \right)\]is equal to\[\cos \theta \]. So apply it in the identity.
$\begin{align}
& \Rightarrow \cos \dfrac{\pi }{7}\cdot \cos \left( \pi -\dfrac{3\pi }{7} \right)\cdot \cos \left( \pi -\dfrac{2\pi }{7} \right) \\
& \Rightarrow \cos \dfrac{\pi }{7}\cdot \cos \dfrac{3\pi }{7}\cdot \cos \dfrac{2\pi }{7}.....\left( 4 \right) \\
\end{align}$
We should rearrange the cosines in the increasing order of their angle in identity (4).
$\begin{align}
& \Rightarrow \cos \dfrac{\pi }{7}\cdot \cos \dfrac{3\pi }{7}\cdot \cos \dfrac{2\pi }{7} \\
& \Rightarrow \cos \dfrac{\pi }{7}\cdot \cos \dfrac{2\pi }{7}\cdot \cos \dfrac{3\pi }{7}.....\left( 5 \right) \\
\end{align}$
Multiply \[2\sin \dfrac{\pi }{7}\] in the numerator and the denominator of the identity (5).
$\begin{align}
& \Rightarrow \dfrac{2\sin \dfrac{\pi }{7}}{2\sin \dfrac{\pi }{7}}\left( \cos \dfrac{\pi }{7}\cdot \cos \dfrac{2\pi }{7}\cdot \cos \dfrac{3\pi }{7} \right) \\
& \Rightarrow \dfrac{1}{2\sin \dfrac{\pi }{7}}\left( \left( 2\sin \dfrac{\pi }{7}\cos \dfrac{\pi }{7} \right)\cdot \cos \dfrac{2\pi }{7}\cdot \cos \dfrac{3\pi }{7} \right).....\left( 6 \right) \\
\end{align}$
Now, we know that the formula for\[2\sin x\cos x\]will be\[\sin 2x\]so applying this formula in identity (6), we get:
$\begin{align}
& \Rightarrow \dfrac{1}{2\sin \dfrac{\pi }{7}}\left( \left( \sin \dfrac{2\pi }{7} \right)\cdot \cos \dfrac{2\pi }{7}\cdot \cos \dfrac{3\pi }{7} \right) \\
& \Rightarrow \dfrac{1}{2\sin \dfrac{\pi }{7}}\left( \dfrac{1}{2}\left( 2\sin \dfrac{2\pi }{7}\cdot \cos \dfrac{2\pi }{7} \right)\cdot \cos \dfrac{3\pi }{7} \right).....\left( 7 \right) \\
\end{align}$
Now, applying the same formula in the identity (7) as explained in the above steps, we get:
$\begin{align}
& \Rightarrow \dfrac{1}{2\sin \dfrac{\pi }{7}}\left( \dfrac{1}{2}\left( 2\sin \dfrac{2\pi }{7}\cdot \cos \dfrac{2\pi }{7} \right)\cdot \cos \dfrac{3\pi }{7} \right) \\
& \Rightarrow \dfrac{1}{2\sin \dfrac{\pi }{7}}\left( \dfrac{1}{2}\left( \sin \dfrac{2\left( 2\pi \right)}{7} \right)\cdot \cos \dfrac{3\pi }{7} \right) \\
& \Rightarrow \dfrac{1}{2\sin \dfrac{\pi }{7}}\left( \dfrac{1}{2}\left( \sin \dfrac{4\pi }{7} \right)\cdot \cos \dfrac{3\pi }{7} \right) \\
& \Rightarrow \dfrac{1}{2\sin \dfrac{\pi }{7}}\left( \dfrac{1}{2}\cdot \dfrac{1}{2}\left( 2\sin \dfrac{4\pi }{7}\cdot \cos \dfrac{3\pi }{7} \right) \right)......\left( 8 \right) \\
\end{align}$
We know that \[\cos \dfrac{3\pi }{7}\] can also be written as \[\cos \left( \pi -\dfrac{4\pi }{7} \right)\] and we also know that \[\cos \left( \pi -\theta \right)\] is equal to \[\cos \theta \]. So applying this in the identity (8), we get:
$\begin{align}
& \Rightarrow \dfrac{1}{2\sin \dfrac{\pi }{7}}\left( \dfrac{1}{2}\cdot \dfrac{1}{2}\left( 2\sin \dfrac{4\pi }{7}\cdot \cos \dfrac{3\pi }{7} \right) \right) \\
& \Rightarrow \dfrac{1}{2\sin \dfrac{\pi }{7}}\left( \dfrac{1}{2}\cdot \dfrac{1}{2}\left( 2\sin \dfrac{4\pi }{7}\cdot \cos \left( \pi -\dfrac{4\pi }{7} \right) \right) \right) \\
& \Rightarrow \dfrac{1}{2\sin \dfrac{\pi }{7}}\left( \dfrac{1}{4}\left( 2\sin \dfrac{4\pi }{7}\cdot \cos \dfrac{4\pi }{7} \right) \right) \\
& \Rightarrow \dfrac{1}{2\sin \dfrac{\pi }{7}}\left( \dfrac{1}{4}\left( \sin \dfrac{8\pi }{7} \right) \right).....\left( 9 \right) \\
\end{align}$
As we know, \[\sin \left( \dfrac{8\pi }{7} \right)\] can also be written as \[\sin \left( \pi +\dfrac{\pi }{7} \right)\] and since \[\sin \left( \pi +x \right)=\sin x\], apply this in identity (9), we get:
$\begin{align}
& \Rightarrow \dfrac{1}{2\sin \dfrac{\pi }{7}}\left( \dfrac{1}{4}\left( \sin \left( \pi +\dfrac{\pi }{7} \right) \right) \right) \\
& \Rightarrow \dfrac{1}{8\sin \dfrac{\pi }{7}}\left( \sin \dfrac{\pi }{7} \right) \\
& \Rightarrow \dfrac{1}{8} \\
\end{align}$
Now, we have obtained the solution to the problem i.e. \[\dfrac{1}{8}\].
Note: We should always keep in mind that while solving a trigonometric problem, we should have learned all the formulas before solving the question. To solve trigonometry the main requirement is the formulas.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

