
How do you evaluate $\cos \left( \dfrac{\pi }{7} \right)\cdot \cos \left( \dfrac{4\cdot \pi }{7} \right)\cdot \cos \left( \dfrac{5\cdot \pi }{7} \right)$?
Answer
534.3k+ views
Hint: If we want to solve the trigonometric identity$\cos \left( \dfrac{\pi }{7} \right)\cdot \cos \left( \dfrac{4\cdot \pi }{7} \right)\cdot \cos \left( \dfrac{5\cdot \pi }{7} \right)$then convert the given identity into simplified form. After we have converted the identity into the simplified form then divide \[2\sin \dfrac{\pi }{7}\]in the numerators and denominators to simplify the identity and reduce it.
Complete step by step solution:
We have our given identity that is $\cos \left( \dfrac{\pi }{7} \right)\cdot \cos \left( \dfrac{4\cdot \pi }{7} \right)\cdot \cos \left( \dfrac{5\cdot \pi }{7} \right)......\left( 1 \right)$.
We have to write the identity into the simplified form such that,
$\begin{align}
& \Rightarrow \cos \left( \dfrac{\pi }{7} \right)\cdot \cos \left( \dfrac{4\cdot \pi }{7} \right)\cdot \cos \left( \dfrac{5\cdot \pi }{7} \right) \\
& \Rightarrow \cos \dfrac{\pi }{7}\cdot \cos \dfrac{4\pi }{7}\cdot \cos \dfrac{5\pi }{7}......\left( 2 \right) \\
\end{align}$
Now, we have the identity in simplified form in identity (2). The \[\cos \dfrac{4\pi }{7}\]can be written as\[\cos \left( \pi -\dfrac{3\pi }{7} \right)\] and \[\cos \dfrac{4\pi }{7}\] can be written as$\cos \left( \pi -\dfrac{2\pi }{7} \right)$. The identities are converted in this form because it will be easier to solve.
$\begin{align}
& \Rightarrow \cos \dfrac{\pi }{7}\cdot \cos \dfrac{4\pi }{7}\cdot \cos \dfrac{5\pi }{7} \\
& \Rightarrow \cos \dfrac{\pi }{7}\cdot \cos \left( \pi -\dfrac{3\pi }{7} \right)\cdot \cos \left( \pi -\dfrac{2\pi }{7} \right).....\left( 3 \right) \\
\end{align}$
Now, we have obtained the identity (3). We know that \[\cos \left( \pi -\theta \right)\]is equal to\[\cos \theta \]. So apply it in the identity.
$\begin{align}
& \Rightarrow \cos \dfrac{\pi }{7}\cdot \cos \left( \pi -\dfrac{3\pi }{7} \right)\cdot \cos \left( \pi -\dfrac{2\pi }{7} \right) \\
& \Rightarrow \cos \dfrac{\pi }{7}\cdot \cos \dfrac{3\pi }{7}\cdot \cos \dfrac{2\pi }{7}.....\left( 4 \right) \\
\end{align}$
We should rearrange the cosines in the increasing order of their angle in identity (4).
$\begin{align}
& \Rightarrow \cos \dfrac{\pi }{7}\cdot \cos \dfrac{3\pi }{7}\cdot \cos \dfrac{2\pi }{7} \\
& \Rightarrow \cos \dfrac{\pi }{7}\cdot \cos \dfrac{2\pi }{7}\cdot \cos \dfrac{3\pi }{7}.....\left( 5 \right) \\
\end{align}$
Multiply \[2\sin \dfrac{\pi }{7}\] in the numerator and the denominator of the identity (5).
$\begin{align}
& \Rightarrow \dfrac{2\sin \dfrac{\pi }{7}}{2\sin \dfrac{\pi }{7}}\left( \cos \dfrac{\pi }{7}\cdot \cos \dfrac{2\pi }{7}\cdot \cos \dfrac{3\pi }{7} \right) \\
& \Rightarrow \dfrac{1}{2\sin \dfrac{\pi }{7}}\left( \left( 2\sin \dfrac{\pi }{7}\cos \dfrac{\pi }{7} \right)\cdot \cos \dfrac{2\pi }{7}\cdot \cos \dfrac{3\pi }{7} \right).....\left( 6 \right) \\
\end{align}$
Now, we know that the formula for\[2\sin x\cos x\]will be\[\sin 2x\]so applying this formula in identity (6), we get:
$\begin{align}
& \Rightarrow \dfrac{1}{2\sin \dfrac{\pi }{7}}\left( \left( \sin \dfrac{2\pi }{7} \right)\cdot \cos \dfrac{2\pi }{7}\cdot \cos \dfrac{3\pi }{7} \right) \\
& \Rightarrow \dfrac{1}{2\sin \dfrac{\pi }{7}}\left( \dfrac{1}{2}\left( 2\sin \dfrac{2\pi }{7}\cdot \cos \dfrac{2\pi }{7} \right)\cdot \cos \dfrac{3\pi }{7} \right).....\left( 7 \right) \\
\end{align}$
Now, applying the same formula in the identity (7) as explained in the above steps, we get:
$\begin{align}
& \Rightarrow \dfrac{1}{2\sin \dfrac{\pi }{7}}\left( \dfrac{1}{2}\left( 2\sin \dfrac{2\pi }{7}\cdot \cos \dfrac{2\pi }{7} \right)\cdot \cos \dfrac{3\pi }{7} \right) \\
& \Rightarrow \dfrac{1}{2\sin \dfrac{\pi }{7}}\left( \dfrac{1}{2}\left( \sin \dfrac{2\left( 2\pi \right)}{7} \right)\cdot \cos \dfrac{3\pi }{7} \right) \\
& \Rightarrow \dfrac{1}{2\sin \dfrac{\pi }{7}}\left( \dfrac{1}{2}\left( \sin \dfrac{4\pi }{7} \right)\cdot \cos \dfrac{3\pi }{7} \right) \\
& \Rightarrow \dfrac{1}{2\sin \dfrac{\pi }{7}}\left( \dfrac{1}{2}\cdot \dfrac{1}{2}\left( 2\sin \dfrac{4\pi }{7}\cdot \cos \dfrac{3\pi }{7} \right) \right)......\left( 8 \right) \\
\end{align}$
We know that \[\cos \dfrac{3\pi }{7}\] can also be written as \[\cos \left( \pi -\dfrac{4\pi }{7} \right)\] and we also know that \[\cos \left( \pi -\theta \right)\] is equal to \[\cos \theta \]. So applying this in the identity (8), we get:
$\begin{align}
& \Rightarrow \dfrac{1}{2\sin \dfrac{\pi }{7}}\left( \dfrac{1}{2}\cdot \dfrac{1}{2}\left( 2\sin \dfrac{4\pi }{7}\cdot \cos \dfrac{3\pi }{7} \right) \right) \\
& \Rightarrow \dfrac{1}{2\sin \dfrac{\pi }{7}}\left( \dfrac{1}{2}\cdot \dfrac{1}{2}\left( 2\sin \dfrac{4\pi }{7}\cdot \cos \left( \pi -\dfrac{4\pi }{7} \right) \right) \right) \\
& \Rightarrow \dfrac{1}{2\sin \dfrac{\pi }{7}}\left( \dfrac{1}{4}\left( 2\sin \dfrac{4\pi }{7}\cdot \cos \dfrac{4\pi }{7} \right) \right) \\
& \Rightarrow \dfrac{1}{2\sin \dfrac{\pi }{7}}\left( \dfrac{1}{4}\left( \sin \dfrac{8\pi }{7} \right) \right).....\left( 9 \right) \\
\end{align}$
As we know, \[\sin \left( \dfrac{8\pi }{7} \right)\] can also be written as \[\sin \left( \pi +\dfrac{\pi }{7} \right)\] and since \[\sin \left( \pi +x \right)=\sin x\], apply this in identity (9), we get:
$\begin{align}
& \Rightarrow \dfrac{1}{2\sin \dfrac{\pi }{7}}\left( \dfrac{1}{4}\left( \sin \left( \pi +\dfrac{\pi }{7} \right) \right) \right) \\
& \Rightarrow \dfrac{1}{8\sin \dfrac{\pi }{7}}\left( \sin \dfrac{\pi }{7} \right) \\
& \Rightarrow \dfrac{1}{8} \\
\end{align}$
Now, we have obtained the solution to the problem i.e. \[\dfrac{1}{8}\].
Note: We should always keep in mind that while solving a trigonometric problem, we should have learned all the formulas before solving the question. To solve trigonometry the main requirement is the formulas.
Complete step by step solution:
We have our given identity that is $\cos \left( \dfrac{\pi }{7} \right)\cdot \cos \left( \dfrac{4\cdot \pi }{7} \right)\cdot \cos \left( \dfrac{5\cdot \pi }{7} \right)......\left( 1 \right)$.
We have to write the identity into the simplified form such that,
$\begin{align}
& \Rightarrow \cos \left( \dfrac{\pi }{7} \right)\cdot \cos \left( \dfrac{4\cdot \pi }{7} \right)\cdot \cos \left( \dfrac{5\cdot \pi }{7} \right) \\
& \Rightarrow \cos \dfrac{\pi }{7}\cdot \cos \dfrac{4\pi }{7}\cdot \cos \dfrac{5\pi }{7}......\left( 2 \right) \\
\end{align}$
Now, we have the identity in simplified form in identity (2). The \[\cos \dfrac{4\pi }{7}\]can be written as\[\cos \left( \pi -\dfrac{3\pi }{7} \right)\] and \[\cos \dfrac{4\pi }{7}\] can be written as$\cos \left( \pi -\dfrac{2\pi }{7} \right)$. The identities are converted in this form because it will be easier to solve.
$\begin{align}
& \Rightarrow \cos \dfrac{\pi }{7}\cdot \cos \dfrac{4\pi }{7}\cdot \cos \dfrac{5\pi }{7} \\
& \Rightarrow \cos \dfrac{\pi }{7}\cdot \cos \left( \pi -\dfrac{3\pi }{7} \right)\cdot \cos \left( \pi -\dfrac{2\pi }{7} \right).....\left( 3 \right) \\
\end{align}$
Now, we have obtained the identity (3). We know that \[\cos \left( \pi -\theta \right)\]is equal to\[\cos \theta \]. So apply it in the identity.
$\begin{align}
& \Rightarrow \cos \dfrac{\pi }{7}\cdot \cos \left( \pi -\dfrac{3\pi }{7} \right)\cdot \cos \left( \pi -\dfrac{2\pi }{7} \right) \\
& \Rightarrow \cos \dfrac{\pi }{7}\cdot \cos \dfrac{3\pi }{7}\cdot \cos \dfrac{2\pi }{7}.....\left( 4 \right) \\
\end{align}$
We should rearrange the cosines in the increasing order of their angle in identity (4).
$\begin{align}
& \Rightarrow \cos \dfrac{\pi }{7}\cdot \cos \dfrac{3\pi }{7}\cdot \cos \dfrac{2\pi }{7} \\
& \Rightarrow \cos \dfrac{\pi }{7}\cdot \cos \dfrac{2\pi }{7}\cdot \cos \dfrac{3\pi }{7}.....\left( 5 \right) \\
\end{align}$
Multiply \[2\sin \dfrac{\pi }{7}\] in the numerator and the denominator of the identity (5).
$\begin{align}
& \Rightarrow \dfrac{2\sin \dfrac{\pi }{7}}{2\sin \dfrac{\pi }{7}}\left( \cos \dfrac{\pi }{7}\cdot \cos \dfrac{2\pi }{7}\cdot \cos \dfrac{3\pi }{7} \right) \\
& \Rightarrow \dfrac{1}{2\sin \dfrac{\pi }{7}}\left( \left( 2\sin \dfrac{\pi }{7}\cos \dfrac{\pi }{7} \right)\cdot \cos \dfrac{2\pi }{7}\cdot \cos \dfrac{3\pi }{7} \right).....\left( 6 \right) \\
\end{align}$
Now, we know that the formula for\[2\sin x\cos x\]will be\[\sin 2x\]so applying this formula in identity (6), we get:
$\begin{align}
& \Rightarrow \dfrac{1}{2\sin \dfrac{\pi }{7}}\left( \left( \sin \dfrac{2\pi }{7} \right)\cdot \cos \dfrac{2\pi }{7}\cdot \cos \dfrac{3\pi }{7} \right) \\
& \Rightarrow \dfrac{1}{2\sin \dfrac{\pi }{7}}\left( \dfrac{1}{2}\left( 2\sin \dfrac{2\pi }{7}\cdot \cos \dfrac{2\pi }{7} \right)\cdot \cos \dfrac{3\pi }{7} \right).....\left( 7 \right) \\
\end{align}$
Now, applying the same formula in the identity (7) as explained in the above steps, we get:
$\begin{align}
& \Rightarrow \dfrac{1}{2\sin \dfrac{\pi }{7}}\left( \dfrac{1}{2}\left( 2\sin \dfrac{2\pi }{7}\cdot \cos \dfrac{2\pi }{7} \right)\cdot \cos \dfrac{3\pi }{7} \right) \\
& \Rightarrow \dfrac{1}{2\sin \dfrac{\pi }{7}}\left( \dfrac{1}{2}\left( \sin \dfrac{2\left( 2\pi \right)}{7} \right)\cdot \cos \dfrac{3\pi }{7} \right) \\
& \Rightarrow \dfrac{1}{2\sin \dfrac{\pi }{7}}\left( \dfrac{1}{2}\left( \sin \dfrac{4\pi }{7} \right)\cdot \cos \dfrac{3\pi }{7} \right) \\
& \Rightarrow \dfrac{1}{2\sin \dfrac{\pi }{7}}\left( \dfrac{1}{2}\cdot \dfrac{1}{2}\left( 2\sin \dfrac{4\pi }{7}\cdot \cos \dfrac{3\pi }{7} \right) \right)......\left( 8 \right) \\
\end{align}$
We know that \[\cos \dfrac{3\pi }{7}\] can also be written as \[\cos \left( \pi -\dfrac{4\pi }{7} \right)\] and we also know that \[\cos \left( \pi -\theta \right)\] is equal to \[\cos \theta \]. So applying this in the identity (8), we get:
$\begin{align}
& \Rightarrow \dfrac{1}{2\sin \dfrac{\pi }{7}}\left( \dfrac{1}{2}\cdot \dfrac{1}{2}\left( 2\sin \dfrac{4\pi }{7}\cdot \cos \dfrac{3\pi }{7} \right) \right) \\
& \Rightarrow \dfrac{1}{2\sin \dfrac{\pi }{7}}\left( \dfrac{1}{2}\cdot \dfrac{1}{2}\left( 2\sin \dfrac{4\pi }{7}\cdot \cos \left( \pi -\dfrac{4\pi }{7} \right) \right) \right) \\
& \Rightarrow \dfrac{1}{2\sin \dfrac{\pi }{7}}\left( \dfrac{1}{4}\left( 2\sin \dfrac{4\pi }{7}\cdot \cos \dfrac{4\pi }{7} \right) \right) \\
& \Rightarrow \dfrac{1}{2\sin \dfrac{\pi }{7}}\left( \dfrac{1}{4}\left( \sin \dfrac{8\pi }{7} \right) \right).....\left( 9 \right) \\
\end{align}$
As we know, \[\sin \left( \dfrac{8\pi }{7} \right)\] can also be written as \[\sin \left( \pi +\dfrac{\pi }{7} \right)\] and since \[\sin \left( \pi +x \right)=\sin x\], apply this in identity (9), we get:
$\begin{align}
& \Rightarrow \dfrac{1}{2\sin \dfrac{\pi }{7}}\left( \dfrac{1}{4}\left( \sin \left( \pi +\dfrac{\pi }{7} \right) \right) \right) \\
& \Rightarrow \dfrac{1}{8\sin \dfrac{\pi }{7}}\left( \sin \dfrac{\pi }{7} \right) \\
& \Rightarrow \dfrac{1}{8} \\
\end{align}$
Now, we have obtained the solution to the problem i.e. \[\dfrac{1}{8}\].
Note: We should always keep in mind that while solving a trigonometric problem, we should have learned all the formulas before solving the question. To solve trigonometry the main requirement is the formulas.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

