
Evaluate $\cos \left( {\dfrac{{13\pi }}{8}} \right)$.
Answer
537k+ views
Hint:Consider one of the basic trigonometric identities $\;\cos 2\theta = 2{\cos ^2}\theta - 1$. In order to solve this question we can use the above mentioned identity. For that we have to convert our question in such a way that it can be expressed in the form of the above given identity, and then we can solve it to get the value.
Complete step by step answer:
Given, $\cos \left( {\dfrac{{13\pi }}{8}} \right)..................................................\left( i \right)$
Now let’s assume \[\cos \left( {\dfrac{{13\pi }}{8}} \right) = \cos a......................\left( {ii} \right)\]
\[ \Rightarrow \cos 2a = \cos \left( {\dfrac{{26\pi }}{8}} \right)\]
We have to find the value of \[\cos \left( {\dfrac{{26\pi }}{8}} \right)\] such that by using the identity we can then solve the question using the given identity $\;\cos 2\theta = 2{\cos ^2}\theta - 1$.
So finding the value of \[\cos \left( {\dfrac{{26\pi }}{8}} \right)\]:
We know that \[\cos \left( {\dfrac{{26\pi }}{8}} \right)\] can be written as
$\cos \left( {\dfrac{{12\left( {2\pi } \right)}}{8} + \dfrac{{2\pi }}{8}} \right) = \cos \left( {3\pi + \dfrac{{2\pi }}{8}} \right) \\ $
\[ \Rightarrow \cos \left( {3\pi + \dfrac{{2\pi }}{8}} \right) = \cos \left( {3\pi + \dfrac{\pi }{4}} \right).................(iii)\]
So from (iii) we know that $\cos \left( {3\pi + \dfrac{\pi }{4}} \right)$ would be in the III Quadrant where cosine is negative.Such that:
\[\operatorname{c} \cos \left( {3\pi + \dfrac{\pi }{4}} \right) = - \cos \left( {\dfrac{\pi }{4}} \right)..................(iv)\]
Also we know \[ - \cos \left( {\dfrac{\pi }{4}} \right) = - \dfrac{1}{{\sqrt 2 }}....................(v)\]
Now by using the identity $\;\cos 2\theta = 2{\cos ^2}\theta - 1$ we get
$\Rightarrow 2{\cos ^2}a = 1 + \cos 2a \\$
Also we know from (v) \[\cos 2a = - \cos \left( {\dfrac{\pi }{4}} \right) = - \dfrac{1}{{\sqrt 2 }}\]
$\Rightarrow 2{\cos ^2}a = 1 + - \dfrac{1}{{\sqrt 2 }} \\
\Rightarrow 2{\cos ^2}a = \dfrac{{\sqrt 2 - 1}}{{\sqrt 2 }} \\
\Rightarrow 2{\cos ^2}a = \left( {\dfrac{{\left( {\sqrt 2 - 1} \right) \times \sqrt 2 }}{{\left( {\sqrt 2 } \right) \times \sqrt 2 }}} \right) = \dfrac{{2 - \sqrt 2 }}{2} \\
\Rightarrow {\cos ^2}a = \dfrac{{2 - \sqrt 2 }}{4} \\ $
From (i) $\cos \left( {\dfrac{{13\pi }}{8}} \right) = \cos a$
\[\Rightarrow \cos a = \sqrt {\dfrac{{2 - \sqrt 2 }}{4}} \\
\Rightarrow \cos a = \dfrac{{\sqrt {2 - \sqrt 2 } }}{2} \\
\Rightarrow \cos \left( {\dfrac{{13\pi }}{8}} \right) = \dfrac{{\sqrt {2 - \sqrt 2 } }}{2} \\ \]
Therefore $\cos \left( {\dfrac{{13\pi }}{8}} \right)$ is \[\dfrac{{\sqrt {2 - \sqrt 2 } }}{2}\].
Note:Some other equations needed for solving these types of problem are:
\[\sin \left( {2\theta } \right) = 2\sin \left( \theta \right)\cos \left( \theta \right) \\
\Rightarrow\cos \left( {2\theta } \right) = {\cos ^2}\left( \theta \right)-{\sin ^2}\left( \theta \right) = 1-2{\text{ }}{\sin ^2}\left( \theta \right) = 2{\text{ }}{\cos ^2}\left( \theta \right)-1\]
Also while approaching a trigonometric problem one should keep in mind that one should work with one side at a time and manipulate it to the other side. The most straightforward way to do this is to simplify one side to the other directly, but we can also transform both sides to a common expression if we see no direct way to connect the two.
Complete step by step answer:
Given, $\cos \left( {\dfrac{{13\pi }}{8}} \right)..................................................\left( i \right)$
Now let’s assume \[\cos \left( {\dfrac{{13\pi }}{8}} \right) = \cos a......................\left( {ii} \right)\]
\[ \Rightarrow \cos 2a = \cos \left( {\dfrac{{26\pi }}{8}} \right)\]
We have to find the value of \[\cos \left( {\dfrac{{26\pi }}{8}} \right)\] such that by using the identity we can then solve the question using the given identity $\;\cos 2\theta = 2{\cos ^2}\theta - 1$.
So finding the value of \[\cos \left( {\dfrac{{26\pi }}{8}} \right)\]:
We know that \[\cos \left( {\dfrac{{26\pi }}{8}} \right)\] can be written as
$\cos \left( {\dfrac{{12\left( {2\pi } \right)}}{8} + \dfrac{{2\pi }}{8}} \right) = \cos \left( {3\pi + \dfrac{{2\pi }}{8}} \right) \\ $
\[ \Rightarrow \cos \left( {3\pi + \dfrac{{2\pi }}{8}} \right) = \cos \left( {3\pi + \dfrac{\pi }{4}} \right).................(iii)\]
So from (iii) we know that $\cos \left( {3\pi + \dfrac{\pi }{4}} \right)$ would be in the III Quadrant where cosine is negative.Such that:
\[\operatorname{c} \cos \left( {3\pi + \dfrac{\pi }{4}} \right) = - \cos \left( {\dfrac{\pi }{4}} \right)..................(iv)\]
Also we know \[ - \cos \left( {\dfrac{\pi }{4}} \right) = - \dfrac{1}{{\sqrt 2 }}....................(v)\]
Now by using the identity $\;\cos 2\theta = 2{\cos ^2}\theta - 1$ we get
$\Rightarrow 2{\cos ^2}a = 1 + \cos 2a \\$
Also we know from (v) \[\cos 2a = - \cos \left( {\dfrac{\pi }{4}} \right) = - \dfrac{1}{{\sqrt 2 }}\]
$\Rightarrow 2{\cos ^2}a = 1 + - \dfrac{1}{{\sqrt 2 }} \\
\Rightarrow 2{\cos ^2}a = \dfrac{{\sqrt 2 - 1}}{{\sqrt 2 }} \\
\Rightarrow 2{\cos ^2}a = \left( {\dfrac{{\left( {\sqrt 2 - 1} \right) \times \sqrt 2 }}{{\left( {\sqrt 2 } \right) \times \sqrt 2 }}} \right) = \dfrac{{2 - \sqrt 2 }}{2} \\
\Rightarrow {\cos ^2}a = \dfrac{{2 - \sqrt 2 }}{4} \\ $
From (i) $\cos \left( {\dfrac{{13\pi }}{8}} \right) = \cos a$
\[\Rightarrow \cos a = \sqrt {\dfrac{{2 - \sqrt 2 }}{4}} \\
\Rightarrow \cos a = \dfrac{{\sqrt {2 - \sqrt 2 } }}{2} \\
\Rightarrow \cos \left( {\dfrac{{13\pi }}{8}} \right) = \dfrac{{\sqrt {2 - \sqrt 2 } }}{2} \\ \]
Therefore $\cos \left( {\dfrac{{13\pi }}{8}} \right)$ is \[\dfrac{{\sqrt {2 - \sqrt 2 } }}{2}\].
Note:Some other equations needed for solving these types of problem are:
\[\sin \left( {2\theta } \right) = 2\sin \left( \theta \right)\cos \left( \theta \right) \\
\Rightarrow\cos \left( {2\theta } \right) = {\cos ^2}\left( \theta \right)-{\sin ^2}\left( \theta \right) = 1-2{\text{ }}{\sin ^2}\left( \theta \right) = 2{\text{ }}{\cos ^2}\left( \theta \right)-1\]
Also while approaching a trigonometric problem one should keep in mind that one should work with one side at a time and manipulate it to the other side. The most straightforward way to do this is to simplify one side to the other directly, but we can also transform both sides to a common expression if we see no direct way to connect the two.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

