
How do you evaluate $ \cos \left( {\dfrac{{11\pi }}{6}} \right)? $
Answer
543.9k+ views
Hint: To evaluate the value of the given trigonometric function $ \cos t $ , first find the value for $ \cos 2t $ and then use the trigonometric identities of compound angle formula for cosine function and also find the quadrant in which the given angle lies and put the sign according to the quadrant.
Cosine has positive values in the first and fourth quadrant and negative in the second and third quadrant.
Also $ \cos (t + 2n\pi ) = \cos t\;{\text{and}}\;\cos ( - t) = \cos t $ , where “n” is integer.
The following formula will be used
$ \cos 2t = 2{\cos ^2}t - 1 $
Complete step-by-step answer:
In order to evaluate the value of $ \cos \left( {\dfrac{{11\pi }}{6}} \right) $ we will first find the value of $ \cos 2 \times \left( {\dfrac{{11\pi }}{6}} \right) = \cos \left( {\dfrac{{22\pi }}{6}} \right) $
And we can write $ \cos \left( {\dfrac{{22\pi }}{6}} \right) $ as follows
$ \Rightarrow \cos \left( {\dfrac{{22\pi }}{6}} \right) = \cos \left( {\dfrac{{24\pi }}{6} - \dfrac{{2\pi }}{6}} \right) $
And can further write it as
$
\Rightarrow \cos \left( {\dfrac{{22\pi }}{6}} \right) = \cos \left( {4\pi - \dfrac{\pi }{3}} \right) \\
\Rightarrow \cos \left( {\dfrac{{22\pi }}{6}} \right) = \cos \left( {2 \times 2\pi - \dfrac{\pi }{3}} \right) \\
$
From the periodic property of cosine, we can write $ \cos (t + 2n\pi ) = \cos t $ , where “n” is an integer
$
\Rightarrow \cos \left( {\dfrac{{22\pi }}{6}} \right) = \cos \left( {2 \times 2\pi - \dfrac{\pi }{3}} \right) \\
\Rightarrow \cos \left( {\dfrac{{22\pi }}{6}} \right) = \cos \left( { - \dfrac{\pi }{3}} \right) \;
$
Now we know that, $ \cos ( - t) = \cos t $
$ \therefore \cos \left( {\dfrac{{22\pi }}{6}} \right) = \cos \left( {\dfrac{\pi }{3}} \right) = \dfrac{1}{2} $
We get the value for $ \cos \left( {\dfrac{{22\pi }}{6}} \right) = \cos \left( {\dfrac{{2 \times 11\pi }}{6}} \right) = \dfrac{1}{2} $
Now from the compound angle formula of cosine function, we know that
$ \cos 2t = 2{\cos ^2}t - 1 $
So using this formula to evaluate the value of $ \cos \left( {\dfrac{{11\pi }}{6}} \right) $
$
\Rightarrow \cos \left( {\dfrac{{2 \times 11\pi }}{6}} \right) = 2{\cos ^2}\left( {\dfrac{{11\pi }}{6}} \right) - 1 \\
\Rightarrow \dfrac{1}{2} + 1 = 2{\cos ^2}\left( {\dfrac{{11\pi }}{6}} \right) \\
\Rightarrow \dfrac{3}{2} = 2{\cos ^2}\left( {\dfrac{{11\pi }}{6}} \right) \\
\Rightarrow 2{\cos ^2}\left( {\dfrac{{11\pi }}{6}} \right) = \dfrac{3}{2} \\
\Rightarrow {\cos ^2}\left( {\dfrac{{11\pi }}{6}} \right) = \dfrac{3}{4} \\
\Rightarrow \cos \left( {\dfrac{{11\pi }}{6}} \right) = \pm \sqrt {\dfrac{3}{4}} \\
\Rightarrow \cos \left( {\dfrac{{11\pi }}{6}} \right) = \dfrac{{ \pm \sqrt 3 }}{2} \;
$
Since the angle $ \left( {\dfrac{{11\pi }}{6}} \right) $ is in the range of fourth quadrant i.e. $ \left[ {\dfrac{{3\pi }}{2},\;2\pi } \right] $
And in the fourth quadrant cosine function has always positive value. Therefore the negative result will be neglected in this question.
Therefore $ \dfrac{{\sqrt 3 }}{2} $ is the required value of $ \cos \left( {\dfrac{{11\pi }}{6}} \right) $
So, the correct answer is “ $ \dfrac{{\sqrt 3 }}{2} $ ”.
Note: When solving this type of trigonometric questions, where the argument or angle is greater than the principal argument of the trigonometric function then divide the argument by $ 2\pi $ and leave the quotient and take the remainder as the new argument, this process will make the problem easy to solve by shrinking the given argument into the range of principal argument.
Cosine has positive values in the first and fourth quadrant and negative in the second and third quadrant.
Also $ \cos (t + 2n\pi ) = \cos t\;{\text{and}}\;\cos ( - t) = \cos t $ , where “n” is integer.
The following formula will be used
$ \cos 2t = 2{\cos ^2}t - 1 $
Complete step-by-step answer:
In order to evaluate the value of $ \cos \left( {\dfrac{{11\pi }}{6}} \right) $ we will first find the value of $ \cos 2 \times \left( {\dfrac{{11\pi }}{6}} \right) = \cos \left( {\dfrac{{22\pi }}{6}} \right) $
And we can write $ \cos \left( {\dfrac{{22\pi }}{6}} \right) $ as follows
$ \Rightarrow \cos \left( {\dfrac{{22\pi }}{6}} \right) = \cos \left( {\dfrac{{24\pi }}{6} - \dfrac{{2\pi }}{6}} \right) $
And can further write it as
$
\Rightarrow \cos \left( {\dfrac{{22\pi }}{6}} \right) = \cos \left( {4\pi - \dfrac{\pi }{3}} \right) \\
\Rightarrow \cos \left( {\dfrac{{22\pi }}{6}} \right) = \cos \left( {2 \times 2\pi - \dfrac{\pi }{3}} \right) \\
$
From the periodic property of cosine, we can write $ \cos (t + 2n\pi ) = \cos t $ , where “n” is an integer
$
\Rightarrow \cos \left( {\dfrac{{22\pi }}{6}} \right) = \cos \left( {2 \times 2\pi - \dfrac{\pi }{3}} \right) \\
\Rightarrow \cos \left( {\dfrac{{22\pi }}{6}} \right) = \cos \left( { - \dfrac{\pi }{3}} \right) \;
$
Now we know that, $ \cos ( - t) = \cos t $
$ \therefore \cos \left( {\dfrac{{22\pi }}{6}} \right) = \cos \left( {\dfrac{\pi }{3}} \right) = \dfrac{1}{2} $
We get the value for $ \cos \left( {\dfrac{{22\pi }}{6}} \right) = \cos \left( {\dfrac{{2 \times 11\pi }}{6}} \right) = \dfrac{1}{2} $
Now from the compound angle formula of cosine function, we know that
$ \cos 2t = 2{\cos ^2}t - 1 $
So using this formula to evaluate the value of $ \cos \left( {\dfrac{{11\pi }}{6}} \right) $
$
\Rightarrow \cos \left( {\dfrac{{2 \times 11\pi }}{6}} \right) = 2{\cos ^2}\left( {\dfrac{{11\pi }}{6}} \right) - 1 \\
\Rightarrow \dfrac{1}{2} + 1 = 2{\cos ^2}\left( {\dfrac{{11\pi }}{6}} \right) \\
\Rightarrow \dfrac{3}{2} = 2{\cos ^2}\left( {\dfrac{{11\pi }}{6}} \right) \\
\Rightarrow 2{\cos ^2}\left( {\dfrac{{11\pi }}{6}} \right) = \dfrac{3}{2} \\
\Rightarrow {\cos ^2}\left( {\dfrac{{11\pi }}{6}} \right) = \dfrac{3}{4} \\
\Rightarrow \cos \left( {\dfrac{{11\pi }}{6}} \right) = \pm \sqrt {\dfrac{3}{4}} \\
\Rightarrow \cos \left( {\dfrac{{11\pi }}{6}} \right) = \dfrac{{ \pm \sqrt 3 }}{2} \;
$
Since the angle $ \left( {\dfrac{{11\pi }}{6}} \right) $ is in the range of fourth quadrant i.e. $ \left[ {\dfrac{{3\pi }}{2},\;2\pi } \right] $
And in the fourth quadrant cosine function has always positive value. Therefore the negative result will be neglected in this question.
Therefore $ \dfrac{{\sqrt 3 }}{2} $ is the required value of $ \cos \left( {\dfrac{{11\pi }}{6}} \right) $
So, the correct answer is “ $ \dfrac{{\sqrt 3 }}{2} $ ”.
Note: When solving this type of trigonometric questions, where the argument or angle is greater than the principal argument of the trigonometric function then divide the argument by $ 2\pi $ and leave the quotient and take the remainder as the new argument, this process will make the problem easy to solve by shrinking the given argument into the range of principal argument.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

