
How do you evaluate $ \cos ec\left( { - \dfrac{{4\pi }}{3}} \right) $ ?
Answer
528.3k+ views
Hint: In order to determine the exact value of any trigonometric function of an angle, first convert the angle of the trigonometric function to an angle whose trigonometric ratio is known to us or is comparatively easier to find. We can change the angle by using the periodicity of the trigonometric functions or using some trigonometric formulae or identities. Then, we simplify the value of the expression to get the simplified value of the desired trigonometric function.
Complete step by step solution:
So, we are required to evaluate the value of $ \cos ec\left( { - \dfrac{{4\pi }}{3}} \right) $ in the question given to us.
Firstly, we know that the cosecant function is periodic in nature and $ 2\pi $ is the fundamental period of the function.
So, $ \cos ec\left( { - \dfrac{{4\pi }}{3}} \right) = \cos ec\left( { - \dfrac{{4\pi }}{3} + 2\pi } \right) $
$ \Rightarrow \cos ec\left( {\dfrac{{ - 4\pi }}{3}} \right) = \cos ec\left( {\dfrac{{ - 4\pi + 6\pi }}{3}} \right) $
$ \Rightarrow \cos ec\left( {\dfrac{{ - 4\pi }}{3}} \right) = \cos ec\left( {\dfrac{{2\pi }}{3}} \right) $
So, we get the value of $ \cos ec\left( {\dfrac{{ - 4\pi }}{3}} \right) $ is same as $ \cos ec\left( {\dfrac{{2\pi }}{3}} \right) $ .
Now, we know that the cosecant trigonometric function is the reciprocal of the sine function. So, we have, $ \cos ec\left( x \right) = \dfrac{1}{{\sin \left( x \right)}} $ .
So, we get, $ \cos ec\left( {\dfrac{{2\pi }}{3}} \right) = \dfrac{1}{{\sin \left( {\dfrac{{2\pi }}{3}} \right)}} $
Now, we know that the values of sine and cosecant trigonometric function are positive in the second quadrant.
Also, the value of $ \sin \left( {\dfrac{{2\pi }}{3}} \right) = \left( {\dfrac{{\sqrt 3 }}{2}} \right) $
So, we get the value of $ \cos ec\left( {\dfrac{{2\pi }}{3}} \right) $ as \[\left( {\dfrac{2}{{\sqrt 3 }}} \right)\].
Hence, the value of $ \cos ec\left( { - \dfrac{{4\pi }}{3}} \right) $ is \[\left( {\dfrac{2}{{\sqrt 3 }}} \right)\].
For rationalising the denominator, we have to multiply the numerator and denominator by $ \sqrt 3 $ . So, we get the value of $ \cos ec\left( { - \dfrac{{4\pi }}{3}} \right) $ as \[\left( {\dfrac{{2\sqrt 3 }}{3}} \right)\].
So, the correct answer is “\[\left( {\dfrac{{2\sqrt 3 }}{3}} \right)\].”.
Note: One must be careful while taking values from the trigonometric table and cross-check at least once to avoid any error in the answer. Trigonometric ratios are the ratios of the sides of a triangle and thus the trigonometric ratios can be found by expressing the ratios in the terms of the sides of a triangle.
Complete step by step solution:
So, we are required to evaluate the value of $ \cos ec\left( { - \dfrac{{4\pi }}{3}} \right) $ in the question given to us.
Firstly, we know that the cosecant function is periodic in nature and $ 2\pi $ is the fundamental period of the function.
So, $ \cos ec\left( { - \dfrac{{4\pi }}{3}} \right) = \cos ec\left( { - \dfrac{{4\pi }}{3} + 2\pi } \right) $
$ \Rightarrow \cos ec\left( {\dfrac{{ - 4\pi }}{3}} \right) = \cos ec\left( {\dfrac{{ - 4\pi + 6\pi }}{3}} \right) $
$ \Rightarrow \cos ec\left( {\dfrac{{ - 4\pi }}{3}} \right) = \cos ec\left( {\dfrac{{2\pi }}{3}} \right) $
So, we get the value of $ \cos ec\left( {\dfrac{{ - 4\pi }}{3}} \right) $ is same as $ \cos ec\left( {\dfrac{{2\pi }}{3}} \right) $ .
Now, we know that the cosecant trigonometric function is the reciprocal of the sine function. So, we have, $ \cos ec\left( x \right) = \dfrac{1}{{\sin \left( x \right)}} $ .
So, we get, $ \cos ec\left( {\dfrac{{2\pi }}{3}} \right) = \dfrac{1}{{\sin \left( {\dfrac{{2\pi }}{3}} \right)}} $
Now, we know that the values of sine and cosecant trigonometric function are positive in the second quadrant.
Also, the value of $ \sin \left( {\dfrac{{2\pi }}{3}} \right) = \left( {\dfrac{{\sqrt 3 }}{2}} \right) $
So, we get the value of $ \cos ec\left( {\dfrac{{2\pi }}{3}} \right) $ as \[\left( {\dfrac{2}{{\sqrt 3 }}} \right)\].
Hence, the value of $ \cos ec\left( { - \dfrac{{4\pi }}{3}} \right) $ is \[\left( {\dfrac{2}{{\sqrt 3 }}} \right)\].
For rationalising the denominator, we have to multiply the numerator and denominator by $ \sqrt 3 $ . So, we get the value of $ \cos ec\left( { - \dfrac{{4\pi }}{3}} \right) $ as \[\left( {\dfrac{{2\sqrt 3 }}{3}} \right)\].
So, the correct answer is “\[\left( {\dfrac{{2\sqrt 3 }}{3}} \right)\].”.
Note: One must be careful while taking values from the trigonometric table and cross-check at least once to avoid any error in the answer. Trigonometric ratios are the ratios of the sides of a triangle and thus the trigonometric ratios can be found by expressing the ratios in the terms of the sides of a triangle.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

