
Evaluate: ${\cos ^{ - 1}}\left( {\cos \dfrac{{2\pi }}
{3}} \right) + {\sin ^{ - 1}}\left( {\sin \dfrac{{2\pi }} {3}} \right)$
(A) $\dfrac{{4\pi }}
{3}$
(B) $\dfrac{\pi }
{2}$
(C) $\dfrac{{3\pi }}
{4}$
(D) $\pi $
Answer
540.3k+ views
Hint:The given expressions can be evaluated by using the properties of inverse trigonometric functions.
According to property of inverse trigonometric functions, if $x \in \left[ {0,\pi } \right]$; the value of ${\sin ^{ - 1}}\left( {\sin x} \right)$ is $x$.
Also, if $x \in \left[ { - \dfrac{\pi }
{2},\dfrac{\pi }
{2}} \right]$;
the value of ${\cos ^{ - 1}}\left( {\cos x} \right)$ is $x$.
Complete step by step solution:
The given expression is ${\cos ^{ - 1}}\left( {\cos \dfrac{{2\pi }}
{3}} \right) + {\sin ^{ - 1}}\left( {\sin \dfrac{{2\pi }} {3}} \right)$.
In order to evaluate the above expression, we need to solve each of the terms by using the properties of inverse trigonometric functions.
It is known that if $x \in \left[ {0,\pi } \right]$;
the value of ${\sin ^{ - 1}}\left( {\sin x} \right)$ is $x$.
Also, if $x \in \left[ { - \dfrac{\pi }
{2},\dfrac{\pi }
{2}} \right]$;
the value of ${\cos ^{ - 1}}\left( {\cos x} \right)$is $x$.
So, ${\sin ^{ - 1}}\left( {\sin x} \right) = x,\forall x \in \left[ { - \dfrac{\pi }
{2},\dfrac{\pi }
{2}} \right]$ and ${\cos ^{ - 1}}\left( {\cos x} \right) = x;\forall x \in \left[ {0,\pi } \right]$.
Now, simplify the term ${\cos ^{ - 1}}\left( {\cos \dfrac{{2\pi }} {3}} \right)$.
In the above expression, the angle is $\dfrac{{2\pi }} {3}$
which belongs to the interval $\left[ { - \dfrac{\pi }
{2},\dfrac{\pi }
{2}} \right]$.
So, the value of the expression ${\cos ^{ - 1}}\left( {\cos \dfrac{{2\pi }}
{3}} \right)$ is $\dfrac{{2\pi }} {3}$ that is, ${\cos ^{ - 1}}\left( {\cos \dfrac{{2\pi }}
{3}} \right) = \dfrac{{2\pi }}
{3}$.
Also, simplify the term ${\sin ^{ - 1}}\left( {\sin \dfrac{{2\pi }}
{3}} \right)$.
In the above expression, the angle is $\dfrac{{2\pi }}
{3}$ which does not belong to the interval $\left[ { - \dfrac{\pi }
{2},\dfrac{\pi }
{2}} \right]$.
So, rewrite the angle $\dfrac{{2\pi }}
{3}$ as,
$
\dfrac{{2\pi }}
{3} = \dfrac{{3\pi - \pi }}
{3} \\
= \dfrac{{3\pi }}
{3} - \dfrac{\pi }
{3} \\
= \pi - \dfrac{\pi }
{3} \\
$
Substitute $\pi - \dfrac{\pi }
{3}$
for $\dfrac{{2\pi }}
{3}$
in the expression ${\sin ^{ - 1}}\left( {\sin \dfrac{{2\pi }}
{3}} \right)$
${\sin ^{ - 1}}\left( {\sin \dfrac{{2\pi }}
{3}} \right) = {\sin ^{ - 1}}\left( {\sin \left( {\pi - \dfrac{\pi }
{3}} \right)} \right)$
Also, it is known that $\sin \left( {\pi - \dfrac{\pi }
{3}} \right) = \sin \dfrac{\pi }
{3}$
Substitute $\sin \dfrac{\pi }
{3}$ for $\sin \left( {\pi - \dfrac{\pi }
{3}} \right)$ in the ${\sin ^{ - 1}}\left( {\sin \dfrac{{2\pi }}
{3}} \right) = {\sin ^{ - 1}}\left( {\sin \left( {\pi - \dfrac{\pi }
{3}} \right)} \right)$
$
{\sin ^{ - 1}}\left( {\sin \dfrac{{2\pi }}
{3}} \right) = {\sin ^{ - 1}}\left( {\sin \left( {\pi - \dfrac{\pi }
{3}} \right)} \right) \\
{\sin ^{ - 1}}\left( {\sin \dfrac{{2\pi }}
{3}} \right) = {\sin ^{ - 1}}\left( {\sin \dfrac{\pi }
{3}} \right) \\
$
In the above expression, it is seen that the angle is $\dfrac{\pi } {3}$ which belongs to the interval $\left[ { - \dfrac{\pi }
{2},\dfrac{\pi }
{2}} \right]$
Rewrite the expression ${\sin ^{ - 1}}\left( {\sin \dfrac{\pi }
{3}} \right)$ by using the property ${\sin ^{ - 1}}\left( {\sin x} \right) = x$
${\sin ^{ - 1}}\left( {\sin \dfrac{\pi }
{3}} \right) = \dfrac{\pi }
{3}$
Substitute the values $\dfrac{{2\pi }}
{3}$
for ${\cos ^{ - 1}}\left( {\cos \dfrac{{2\pi }}
{3}} \right)$
and $\dfrac{\pi }
{3}$
for ${\sin ^{ - 1}}\left( {\sin \dfrac{\pi }
{3}} \right)$
in the expression ${\cos ^{ - 1}}\left( {\cos \dfrac{{2\pi }}
{3}} \right) + {\sin ^{ - 1}}\left( {\sin \dfrac{{2\pi }}
{3}} \right)$
and simplify.
$
{\cos ^{ - 1}}\left( {\cos \dfrac{{2\pi }}
{3}} \right) + {\sin ^{ - 1}}\left( {\sin \dfrac{{2\pi }}
{3}} \right) = \dfrac{{2\pi }}
{3} + \dfrac{\pi }
{3} \\
= \dfrac{{2\pi + \pi }}
{3} \\
= \dfrac{{3\pi }}
{3} \\
= \pi \\
$
Thus, the required value of the given expression is $\pi $ .
Hence, the required correct answer is (D).
Note: To evaluate the given expression it is necessary to use the properties of inverse trigonometric functions for ${\cos ^{ - 1}}$ and ${\sin ^{ - 1}}$ . We must know that the inverse trigonometric function ${\cos ^{ - 1}}$ lies in the interval $\left[ {0,\pi } \right]$ . Also, the inverse trigonometric function ${\sin ^{ - 1}}$ lies in the interval $\left[ { - \dfrac{\pi } {2},\dfrac{\pi } {2}} \right]$
According to property of inverse trigonometric functions, if $x \in \left[ {0,\pi } \right]$; the value of ${\sin ^{ - 1}}\left( {\sin x} \right)$ is $x$.
Also, if $x \in \left[ { - \dfrac{\pi }
{2},\dfrac{\pi }
{2}} \right]$;
the value of ${\cos ^{ - 1}}\left( {\cos x} \right)$ is $x$.
Complete step by step solution:
The given expression is ${\cos ^{ - 1}}\left( {\cos \dfrac{{2\pi }}
{3}} \right) + {\sin ^{ - 1}}\left( {\sin \dfrac{{2\pi }} {3}} \right)$.
In order to evaluate the above expression, we need to solve each of the terms by using the properties of inverse trigonometric functions.
It is known that if $x \in \left[ {0,\pi } \right]$;
the value of ${\sin ^{ - 1}}\left( {\sin x} \right)$ is $x$.
Also, if $x \in \left[ { - \dfrac{\pi }
{2},\dfrac{\pi }
{2}} \right]$;
the value of ${\cos ^{ - 1}}\left( {\cos x} \right)$is $x$.
So, ${\sin ^{ - 1}}\left( {\sin x} \right) = x,\forall x \in \left[ { - \dfrac{\pi }
{2},\dfrac{\pi }
{2}} \right]$ and ${\cos ^{ - 1}}\left( {\cos x} \right) = x;\forall x \in \left[ {0,\pi } \right]$.
Now, simplify the term ${\cos ^{ - 1}}\left( {\cos \dfrac{{2\pi }} {3}} \right)$.
In the above expression, the angle is $\dfrac{{2\pi }} {3}$
which belongs to the interval $\left[ { - \dfrac{\pi }
{2},\dfrac{\pi }
{2}} \right]$.
So, the value of the expression ${\cos ^{ - 1}}\left( {\cos \dfrac{{2\pi }}
{3}} \right)$ is $\dfrac{{2\pi }} {3}$ that is, ${\cos ^{ - 1}}\left( {\cos \dfrac{{2\pi }}
{3}} \right) = \dfrac{{2\pi }}
{3}$.
Also, simplify the term ${\sin ^{ - 1}}\left( {\sin \dfrac{{2\pi }}
{3}} \right)$.
In the above expression, the angle is $\dfrac{{2\pi }}
{3}$ which does not belong to the interval $\left[ { - \dfrac{\pi }
{2},\dfrac{\pi }
{2}} \right]$.
So, rewrite the angle $\dfrac{{2\pi }}
{3}$ as,
$
\dfrac{{2\pi }}
{3} = \dfrac{{3\pi - \pi }}
{3} \\
= \dfrac{{3\pi }}
{3} - \dfrac{\pi }
{3} \\
= \pi - \dfrac{\pi }
{3} \\
$
Substitute $\pi - \dfrac{\pi }
{3}$
for $\dfrac{{2\pi }}
{3}$
in the expression ${\sin ^{ - 1}}\left( {\sin \dfrac{{2\pi }}
{3}} \right)$
${\sin ^{ - 1}}\left( {\sin \dfrac{{2\pi }}
{3}} \right) = {\sin ^{ - 1}}\left( {\sin \left( {\pi - \dfrac{\pi }
{3}} \right)} \right)$
Also, it is known that $\sin \left( {\pi - \dfrac{\pi }
{3}} \right) = \sin \dfrac{\pi }
{3}$
Substitute $\sin \dfrac{\pi }
{3}$ for $\sin \left( {\pi - \dfrac{\pi }
{3}} \right)$ in the ${\sin ^{ - 1}}\left( {\sin \dfrac{{2\pi }}
{3}} \right) = {\sin ^{ - 1}}\left( {\sin \left( {\pi - \dfrac{\pi }
{3}} \right)} \right)$
$
{\sin ^{ - 1}}\left( {\sin \dfrac{{2\pi }}
{3}} \right) = {\sin ^{ - 1}}\left( {\sin \left( {\pi - \dfrac{\pi }
{3}} \right)} \right) \\
{\sin ^{ - 1}}\left( {\sin \dfrac{{2\pi }}
{3}} \right) = {\sin ^{ - 1}}\left( {\sin \dfrac{\pi }
{3}} \right) \\
$
In the above expression, it is seen that the angle is $\dfrac{\pi } {3}$ which belongs to the interval $\left[ { - \dfrac{\pi }
{2},\dfrac{\pi }
{2}} \right]$
Rewrite the expression ${\sin ^{ - 1}}\left( {\sin \dfrac{\pi }
{3}} \right)$ by using the property ${\sin ^{ - 1}}\left( {\sin x} \right) = x$
${\sin ^{ - 1}}\left( {\sin \dfrac{\pi }
{3}} \right) = \dfrac{\pi }
{3}$
Substitute the values $\dfrac{{2\pi }}
{3}$
for ${\cos ^{ - 1}}\left( {\cos \dfrac{{2\pi }}
{3}} \right)$
and $\dfrac{\pi }
{3}$
for ${\sin ^{ - 1}}\left( {\sin \dfrac{\pi }
{3}} \right)$
in the expression ${\cos ^{ - 1}}\left( {\cos \dfrac{{2\pi }}
{3}} \right) + {\sin ^{ - 1}}\left( {\sin \dfrac{{2\pi }}
{3}} \right)$
and simplify.
$
{\cos ^{ - 1}}\left( {\cos \dfrac{{2\pi }}
{3}} \right) + {\sin ^{ - 1}}\left( {\sin \dfrac{{2\pi }}
{3}} \right) = \dfrac{{2\pi }}
{3} + \dfrac{\pi }
{3} \\
= \dfrac{{2\pi + \pi }}
{3} \\
= \dfrac{{3\pi }}
{3} \\
= \pi \\
$
Thus, the required value of the given expression is $\pi $ .
Hence, the required correct answer is (D).
Note: To evaluate the given expression it is necessary to use the properties of inverse trigonometric functions for ${\cos ^{ - 1}}$ and ${\sin ^{ - 1}}$ . We must know that the inverse trigonometric function ${\cos ^{ - 1}}$ lies in the interval $\left[ {0,\pi } \right]$ . Also, the inverse trigonometric function ${\sin ^{ - 1}}$ lies in the interval $\left[ { - \dfrac{\pi } {2},\dfrac{\pi } {2}} \right]$
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

