
How do you evaluate \[\arctan \left( { - \dfrac{3}{4}} \right)\] \[?\]
Answer
556.5k+ views
Hint: Here in this question the given function contains arc, so it comes under the topic of inverse trigonometry function. To find the value of this function we use Maclaurin series or expansion, it’s formula can be defined as \[f(x) = \sum\limits_{n = 0}^\infty {\dfrac{{{f^n}\left( {{x_0}} \right)}}{{n!}}} \left( {x - {x_0}} \right)\] further solve this formula for \[\arctan \] by simplification we get the required result.
Complete step-by-step answer:
The given function is an inverse trigonometry function. The basic inverse trigonometric functions are used to find the angles in right triangles.
To solve the given inverse trigonometry function we use a Maclaurin series or expansion.
The Maclaurin series is a special case of Taylor series when \[x = 0\] . The Maclaurin series is given by
\[f(x) = f({x_0}) + f'({x_0})\left( {x - {x_0}} \right) + \dfrac{{f''({x_0})}}{{2!}}{\left( {x - {x_0}} \right)^2} + \dfrac{{f'''({x_0})}}{{3!}}{\left( {x - {x_0}} \right)^3} + \,\, \cdot \cdot \cdot \]
In general formula of Maclaurin series is
\[f(x) = \sum\limits_{n = 0}^\infty {\dfrac{{{f^n}\left( {{x_0}} \right)}}{{n!}}} {\left( {x - {x_0}} \right)^n}\]
Where \[f'({x_0})\] , \[f''({x_0})\] , \[f'''({x_0})\] , … are the successive differentials when \[{x_0} = 0\] .
Consider the given function \[\arctan \left( { - \dfrac{3}{4}} \right)\]
Before going to solve this, first find the Maclaurin series of \[\arctan \left( x \right)\] when \[{x_0} = 0\] .
So it is given as
\[f(x) = \arctan (x)\]
\[ \Rightarrow f\left( 0 \right) = 0\]
\[f'\left( x \right) = \dfrac{d}{{dx}}\arctan (x) = \dfrac{1}{{1 + {x^2}}}\]
\[ \Rightarrow f'\left( 0 \right) = 1\]
\[f''\left( x \right) = \dfrac{{{d^2}}}{{d{x^2}}}\arctan (x) = \dfrac{d}{{dx}}\left( {\dfrac{1}{{1 + {x^2}}}} \right) = \dfrac{{ - 2x}}{{{{\left( {1 + {x^2}} \right)}^2}}}\]
\[f''\left( 0 \right) = 0\]
And so on.
Continuing like this for other derivative values.
Hence the Maclaurin series of \[\arctan (x)\] is given by
\[f(x) = \arctan (x) = x - \dfrac{{{x^3}}}{3} + \dfrac{{{x^5}}}{5} + \cdot \cdot \cdot \]
In general it is defined as
\[\arctan (x) = \sum\limits_{n = 0}^\infty {\dfrac{{{{\left( { - 1} \right)}^n}{x^{2n + 1}}}}{{2n + 1}}} \]
For the given function we have to replace \[x\] by \[ - \dfrac{3}{4}\] , then the Maclaurin series of \[\arctan (x)\] becomes
\[\arctan \left( { - \dfrac{3}{4}} \right) = - \dfrac{3}{4} - \dfrac{{{{\left( { - \dfrac{3}{4}} \right)}^3}}}{3} + \dfrac{{{{\left( { - \dfrac{3}{4}} \right)}^5}}}{5} + \cdot \cdot \cdot \]
On simplifying we have
\[ \Rightarrow \arctan \left( { - \dfrac{3}{4}} \right) = - \dfrac{3}{4} + \dfrac{{{3^3}}}{{{4^3} \cdot 3}} - \dfrac{{{3^5}}}{{{4^5} \cdot 5}} + \cdot \cdot \cdot \]
Expand the exponential numbers we have
\[ \Rightarrow \arctan \left( { - \dfrac{3}{4}} \right) = - \dfrac{3}{4} + \dfrac{{27}}{{64 \cdot 3}} - \dfrac{{243}}{{256 \cdot 5}} + \cdot \cdot \cdot \]
\[ \Rightarrow \arctan \left( { - \dfrac{3}{4}} \right) = - \dfrac{3}{4} + \dfrac{{27}}{{192}} - \dfrac{{243}}{{1280}} + \cdot \cdot \cdot \]
On further simplification we get
\[ \Rightarrow \arctan \left( { - \dfrac{3}{4}} \right) = - 0.75 + 0.140625 - 0.18984375 + \cdot \cdot \cdot \]
On adding these numbers we have
\[ \Rightarrow \arctan \left( { - \dfrac{3}{4}} \right) = - 0.799219\]
Hence the value of \[\arctan \left( { - \dfrac{3}{4}} \right)\] is \[ - 0.780\] rounded to the third decimal figure.
So, the correct answer is “ - 0.780”.
Note: We can calculate the inverse of a trigonometry ratio by the help of a tale of trigonometry ratios for the standard angles. or we can determine the inverse value of tan we use the maclaurin series expansion formula. Hence we substitute the value of x in the given formula and hence we obtain the solution for the question.
Complete step-by-step answer:
The given function is an inverse trigonometry function. The basic inverse trigonometric functions are used to find the angles in right triangles.
To solve the given inverse trigonometry function we use a Maclaurin series or expansion.
The Maclaurin series is a special case of Taylor series when \[x = 0\] . The Maclaurin series is given by
\[f(x) = f({x_0}) + f'({x_0})\left( {x - {x_0}} \right) + \dfrac{{f''({x_0})}}{{2!}}{\left( {x - {x_0}} \right)^2} + \dfrac{{f'''({x_0})}}{{3!}}{\left( {x - {x_0}} \right)^3} + \,\, \cdot \cdot \cdot \]
In general formula of Maclaurin series is
\[f(x) = \sum\limits_{n = 0}^\infty {\dfrac{{{f^n}\left( {{x_0}} \right)}}{{n!}}} {\left( {x - {x_0}} \right)^n}\]
Where \[f'({x_0})\] , \[f''({x_0})\] , \[f'''({x_0})\] , … are the successive differentials when \[{x_0} = 0\] .
Consider the given function \[\arctan \left( { - \dfrac{3}{4}} \right)\]
Before going to solve this, first find the Maclaurin series of \[\arctan \left( x \right)\] when \[{x_0} = 0\] .
So it is given as
\[f(x) = \arctan (x)\]
\[ \Rightarrow f\left( 0 \right) = 0\]
\[f'\left( x \right) = \dfrac{d}{{dx}}\arctan (x) = \dfrac{1}{{1 + {x^2}}}\]
\[ \Rightarrow f'\left( 0 \right) = 1\]
\[f''\left( x \right) = \dfrac{{{d^2}}}{{d{x^2}}}\arctan (x) = \dfrac{d}{{dx}}\left( {\dfrac{1}{{1 + {x^2}}}} \right) = \dfrac{{ - 2x}}{{{{\left( {1 + {x^2}} \right)}^2}}}\]
\[f''\left( 0 \right) = 0\]
And so on.
Continuing like this for other derivative values.
Hence the Maclaurin series of \[\arctan (x)\] is given by
\[f(x) = \arctan (x) = x - \dfrac{{{x^3}}}{3} + \dfrac{{{x^5}}}{5} + \cdot \cdot \cdot \]
In general it is defined as
\[\arctan (x) = \sum\limits_{n = 0}^\infty {\dfrac{{{{\left( { - 1} \right)}^n}{x^{2n + 1}}}}{{2n + 1}}} \]
For the given function we have to replace \[x\] by \[ - \dfrac{3}{4}\] , then the Maclaurin series of \[\arctan (x)\] becomes
\[\arctan \left( { - \dfrac{3}{4}} \right) = - \dfrac{3}{4} - \dfrac{{{{\left( { - \dfrac{3}{4}} \right)}^3}}}{3} + \dfrac{{{{\left( { - \dfrac{3}{4}} \right)}^5}}}{5} + \cdot \cdot \cdot \]
On simplifying we have
\[ \Rightarrow \arctan \left( { - \dfrac{3}{4}} \right) = - \dfrac{3}{4} + \dfrac{{{3^3}}}{{{4^3} \cdot 3}} - \dfrac{{{3^5}}}{{{4^5} \cdot 5}} + \cdot \cdot \cdot \]
Expand the exponential numbers we have
\[ \Rightarrow \arctan \left( { - \dfrac{3}{4}} \right) = - \dfrac{3}{4} + \dfrac{{27}}{{64 \cdot 3}} - \dfrac{{243}}{{256 \cdot 5}} + \cdot \cdot \cdot \]
\[ \Rightarrow \arctan \left( { - \dfrac{3}{4}} \right) = - \dfrac{3}{4} + \dfrac{{27}}{{192}} - \dfrac{{243}}{{1280}} + \cdot \cdot \cdot \]
On further simplification we get
\[ \Rightarrow \arctan \left( { - \dfrac{3}{4}} \right) = - 0.75 + 0.140625 - 0.18984375 + \cdot \cdot \cdot \]
On adding these numbers we have
\[ \Rightarrow \arctan \left( { - \dfrac{3}{4}} \right) = - 0.799219\]
Hence the value of \[\arctan \left( { - \dfrac{3}{4}} \right)\] is \[ - 0.780\] rounded to the third decimal figure.
So, the correct answer is “ - 0.780”.
Note: We can calculate the inverse of a trigonometry ratio by the help of a tale of trigonometry ratios for the standard angles. or we can determine the inverse value of tan we use the maclaurin series expansion formula. Hence we substitute the value of x in the given formula and hence we obtain the solution for the question.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Explain zero factorial class 11 maths CBSE

What organs are located on the left side of your body class 11 biology CBSE

Draw a labelled diagram of the human heart and label class 11 biology CBSE

What is 1s 2s 2p 3s 3p class 11 chemistry CBSE

