
How do you evaluate \[\arctan (0.5)\] express your own radians \[?\]
Answer
542.7k+ views
Hint: Here in this question the given function is a function of inverse trigonometry function. To find the value of this function by Maclaurin series or expansion, its formula can be defined as \[f(x) = \sum\limits_{n = 0}^\infty {\dfrac{{{f^n}\left( {{x_0}} \right)}}{{n!}}} {\left( {x - {x_0}} \right)^n}\] further solve this formula for \[\arctan \] by simplification we get the required result.
Complete step-by-step answer:
The given function is an inverse trigonometry function. The basic inverse trigonometric functions are used to find the angles in right triangles.
To solve the given inverse trigonometry function by using a Maclaurin series or expansion.
Maclaurin series is a function, that is expansion series which gives the sum of derivatives of that function. The Maclaurin series of a function \[f\left( x \right)\] up to order n may be found using series \[\left[ {f,{\text{ }}x,{\text{ }}0,{\text{ }}n{\text{ }}} \right] \] .
The Maclaurin series is a special case of Taylor series when \[x = 0\] . The Maclaurin series is given by
\[f(x) = f({x_0}) + f'({x_0})\left( {x - {x_0}} \right) + \dfrac{{f''({x_0})}}{{2!}}{\left( {x - {x_0}} \right)^2} + \dfrac{{f'''({x_0})}}{{3!}}{\left( {x - {x_0}} \right)^3} + \,\, \cdot \cdot \cdot \]
In general formula of Maclaurin series is
\[f(x) = \sum\limits_{n = 0}^\infty {\dfrac{{{f^n}\left( {{x_0}} \right)}}{{n!}}} {\left( {x - {x_0}} \right)^n}\]
Where \[f'({x_0})\] , \[f''({x_0})\] , \[f'''({x_0})\] , … are the successive differentials when \[{x_0} = 0\] .
Consider the given inverse tan function \[\arctan (0.5)\]
Before going to solve this first find the Maclaurin series of \[\arctan (x)\] when \[{x_0} = 0\]
So let’s begin :
\[f(x) = \arctan (x)\]
\[ \Rightarrow f\left( 0 \right) = 0\]
\[f'\left( x \right) = \dfrac{d}{{dx}}{\tan ^{ - 1}}x = \dfrac{1}{{1 + {x^2}}}\]
\[ \Rightarrow f'\left( 0 \right) = 1\]
\[f''\left( x \right) = \dfrac{{{d^2}}}{{d{x^2}}}\left( {{{\tan }^{ - 1}}x} \right) = \dfrac{{ - 2x}}{{{{\left( {1 + {x^2}} \right)}^2}}}\]
\[ \Rightarrow f''\left( 0 \right) = 0\]
Continue this for several values.
Hence the Maclaurin series of \[\arctan \left( x \right)\] is given by
\[f(x) = \arctan \left( x \right) = x - \dfrac{{{x^3}}}{3} + \dfrac{{{x^5}}}{5} + \cdot \cdot \cdot \]
In general
\[\arctan \left( x \right) = \sum\limits_{n = 0}^\infty {\dfrac{{{{\left( { - 1} \right)}^n}{x^{2n + 1}}}}{{2n + 1}}} \]
For the given function replace \[x\] by \[0.5\] , then the Maclaurin series of \[\arctan \left( x \right)\] becomes
\[ \Rightarrow \arctan (0.5) = 0.5 - \dfrac{{{{\left( {0.5} \right)}^3}}}{3} + \dfrac{{{{\left( {0.5} \right)}^5}}}{5} + \cdot \cdot \cdot \]
\[ \Rightarrow \arctan \left( {0.5} \right) = 0.5 - \dfrac{{0.125}}{3} + \dfrac{{0.03125}}{5} + \cdot \cdot \cdot \]
\[ \Rightarrow \arctan \left( {0.5} \right) = 0.5 - 0.041667 + 0.00625 + \cdot \cdot \cdot \]
\[ \Rightarrow \arctan (0.5) = 0.4645\]
Hence the value of \[\arctan (0.5)\] is \[0.4645\] radians.
So, the correct answer is “ \[0.4645\] radians”.
Note: We can calculate the inverse of a trigonometry ratio by the help of a tale of trigonometry ratios for the standard angles. or we can determine the inverse value of tan we use the maclaurin series expansion formula. Hence we substitute the value of x in the given formula and hence we obtain the solution for the question.
Complete step-by-step answer:
The given function is an inverse trigonometry function. The basic inverse trigonometric functions are used to find the angles in right triangles.
To solve the given inverse trigonometry function by using a Maclaurin series or expansion.
Maclaurin series is a function, that is expansion series which gives the sum of derivatives of that function. The Maclaurin series of a function \[f\left( x \right)\] up to order n may be found using series \[\left[ {f,{\text{ }}x,{\text{ }}0,{\text{ }}n{\text{ }}} \right] \] .
The Maclaurin series is a special case of Taylor series when \[x = 0\] . The Maclaurin series is given by
\[f(x) = f({x_0}) + f'({x_0})\left( {x - {x_0}} \right) + \dfrac{{f''({x_0})}}{{2!}}{\left( {x - {x_0}} \right)^2} + \dfrac{{f'''({x_0})}}{{3!}}{\left( {x - {x_0}} \right)^3} + \,\, \cdot \cdot \cdot \]
In general formula of Maclaurin series is
\[f(x) = \sum\limits_{n = 0}^\infty {\dfrac{{{f^n}\left( {{x_0}} \right)}}{{n!}}} {\left( {x - {x_0}} \right)^n}\]
Where \[f'({x_0})\] , \[f''({x_0})\] , \[f'''({x_0})\] , … are the successive differentials when \[{x_0} = 0\] .
Consider the given inverse tan function \[\arctan (0.5)\]
Before going to solve this first find the Maclaurin series of \[\arctan (x)\] when \[{x_0} = 0\]
So let’s begin :
\[f(x) = \arctan (x)\]
\[ \Rightarrow f\left( 0 \right) = 0\]
\[f'\left( x \right) = \dfrac{d}{{dx}}{\tan ^{ - 1}}x = \dfrac{1}{{1 + {x^2}}}\]
\[ \Rightarrow f'\left( 0 \right) = 1\]
\[f''\left( x \right) = \dfrac{{{d^2}}}{{d{x^2}}}\left( {{{\tan }^{ - 1}}x} \right) = \dfrac{{ - 2x}}{{{{\left( {1 + {x^2}} \right)}^2}}}\]
\[ \Rightarrow f''\left( 0 \right) = 0\]
Continue this for several values.
Hence the Maclaurin series of \[\arctan \left( x \right)\] is given by
\[f(x) = \arctan \left( x \right) = x - \dfrac{{{x^3}}}{3} + \dfrac{{{x^5}}}{5} + \cdot \cdot \cdot \]
In general
\[\arctan \left( x \right) = \sum\limits_{n = 0}^\infty {\dfrac{{{{\left( { - 1} \right)}^n}{x^{2n + 1}}}}{{2n + 1}}} \]
For the given function replace \[x\] by \[0.5\] , then the Maclaurin series of \[\arctan \left( x \right)\] becomes
\[ \Rightarrow \arctan (0.5) = 0.5 - \dfrac{{{{\left( {0.5} \right)}^3}}}{3} + \dfrac{{{{\left( {0.5} \right)}^5}}}{5} + \cdot \cdot \cdot \]
\[ \Rightarrow \arctan \left( {0.5} \right) = 0.5 - \dfrac{{0.125}}{3} + \dfrac{{0.03125}}{5} + \cdot \cdot \cdot \]
\[ \Rightarrow \arctan \left( {0.5} \right) = 0.5 - 0.041667 + 0.00625 + \cdot \cdot \cdot \]
\[ \Rightarrow \arctan (0.5) = 0.4645\]
Hence the value of \[\arctan (0.5)\] is \[0.4645\] radians.
So, the correct answer is “ \[0.4645\] radians”.
Note: We can calculate the inverse of a trigonometry ratio by the help of a tale of trigonometry ratios for the standard angles. or we can determine the inverse value of tan we use the maclaurin series expansion formula. Hence we substitute the value of x in the given formula and hence we obtain the solution for the question.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

