
How do you estimate the quantity using linear approximation and find the error using a calculator of $\dfrac{1}{\sqrt{95}}-\dfrac{1}{\sqrt{98}}$ ?
Answer
548.7k+ views
Hint: For answering this question we will assume a function $f\left( x \right)=\dfrac{1}{\sqrt{x}}$ and find the slope${{f}^{'}}\left( x \right)$ of the following curve. We will use the equation of the curve and find the approximate value and compare with the calculated value.
Complete step by step solution:
Now considering from the question we have been asked to estimate the quantity using linear approximation and find the error using a calculator of $\dfrac{1}{\sqrt{95}}-\dfrac{1}{\sqrt{98}}$ .
We will assume a function $f\left( x \right)=\dfrac{1}{\sqrt{x}}$ with slope $\dfrac{d}{dx}f\left( x \right)=\dfrac{-1}{2}{{x}^{\dfrac{-3}{2}}}$ .
Let us consider $x=100$ then we will have $f\left( 100 \right)=\dfrac{1}{10}$ and slope
$\begin{align}
& \dfrac{d}{dx}f\left( 100 \right)=\dfrac{-1}{2}{{\left( 100 \right)}^{\dfrac{-3}{2}}} \\
& \Rightarrow \dfrac{d}{dx}f\left( 100 \right)=\dfrac{-1}{2}{{\left( 10 \right)}^{-3}} \\
\end{align}$ .
Now we will try to get the equation of the curve. The equation of the curve will be given as
$\begin{align}
& \left( y-f\left( {{x}_{1}} \right) \right)={{f}^{'}}\left( {{x}_{1}} \right)\left( x-{{x}_{1}} \right) \\
& \Rightarrow \left( y-\dfrac{1}{10} \right)=\dfrac{-1}{2}{{\left( 10 \right)}^{-3}}\left( x-100 \right) \\
& \Rightarrow y=\dfrac{-1}{2000}x+\dfrac{3}{20} \\
\end{align}$ .
Now we need to get the value of
$\begin{align}
& f\left( 95 \right)-f\left( 98 \right)=\dfrac{-1}{2000}\left( 95 \right)+\dfrac{3}{20}-\left( \dfrac{-1}{2000}\left( 98 \right)+\dfrac{3}{20} \right) \\
& \Rightarrow \dfrac{-1}{2000}\left( 95 \right)+\dfrac{3}{20}+\dfrac{1}{2000}\left( 98 \right)-\dfrac{3}{20}=\dfrac{1}{2000}\left( 98-95 \right) \\
& \Rightarrow \dfrac{3}{2000}=0.00150 \\
\end{align}$.
Hence we can say that the estimated value is $0.00150$ and the calculator value is given as $0.00158$ .
The error percentage will be $%error=\dfrac{0.00150-0.00158}{0.00158}\Rightarrow 5%$ .
Hence we can say that the percentage error is $5%$ .
Therefore we can conclude that the estimated value of the given quantity $\dfrac{1}{\sqrt{95}}-\dfrac{1}{\sqrt{98}}$ using linear approximation is $0.00150$ and the value found with calculator is $0.00158$ and the error is $5%$.
Note: While answering this question we should be sure with our concept that we apply and the calculations we make. This is a question related to errors and approximations chapter. We can find the value of $\dfrac{1}{\sqrt{95}}$ and $\dfrac{1}{\sqrt{98}}$ as given
$\begin{align}
& \dfrac{1}{\sqrt{95}}=\dfrac{-1}{2000}\left( 95 \right)+\dfrac{3}{20} \\
& \Rightarrow \dfrac{1}{\sqrt{95}}=\dfrac{-95}{2000}+\dfrac{3}{20} \\
& \Rightarrow \dfrac{1}{\sqrt{95}}=-0.0475+0.15 \\
& \Rightarrow \dfrac{1}{\sqrt{95}}=-0.1025 \\
\end{align}$
and similarly
$\begin{align}
& \dfrac{1}{\sqrt{98}}=\dfrac{-1}{2000}\left( 98 \right)+\dfrac{3}{20} \\
& \Rightarrow \dfrac{1}{\sqrt{98}}=\dfrac{-98}{2000}+\dfrac{3}{20} \\
& \Rightarrow \dfrac{1}{\sqrt{98}}=-0.049+0.15 \\
& \Rightarrow \dfrac{1}{\sqrt{98}}=-0.101 \\
\end{align}$.
Complete step by step solution:
Now considering from the question we have been asked to estimate the quantity using linear approximation and find the error using a calculator of $\dfrac{1}{\sqrt{95}}-\dfrac{1}{\sqrt{98}}$ .
We will assume a function $f\left( x \right)=\dfrac{1}{\sqrt{x}}$ with slope $\dfrac{d}{dx}f\left( x \right)=\dfrac{-1}{2}{{x}^{\dfrac{-3}{2}}}$ .
Let us consider $x=100$ then we will have $f\left( 100 \right)=\dfrac{1}{10}$ and slope
$\begin{align}
& \dfrac{d}{dx}f\left( 100 \right)=\dfrac{-1}{2}{{\left( 100 \right)}^{\dfrac{-3}{2}}} \\
& \Rightarrow \dfrac{d}{dx}f\left( 100 \right)=\dfrac{-1}{2}{{\left( 10 \right)}^{-3}} \\
\end{align}$ .
Now we will try to get the equation of the curve. The equation of the curve will be given as
$\begin{align}
& \left( y-f\left( {{x}_{1}} \right) \right)={{f}^{'}}\left( {{x}_{1}} \right)\left( x-{{x}_{1}} \right) \\
& \Rightarrow \left( y-\dfrac{1}{10} \right)=\dfrac{-1}{2}{{\left( 10 \right)}^{-3}}\left( x-100 \right) \\
& \Rightarrow y=\dfrac{-1}{2000}x+\dfrac{3}{20} \\
\end{align}$ .
Now we need to get the value of
$\begin{align}
& f\left( 95 \right)-f\left( 98 \right)=\dfrac{-1}{2000}\left( 95 \right)+\dfrac{3}{20}-\left( \dfrac{-1}{2000}\left( 98 \right)+\dfrac{3}{20} \right) \\
& \Rightarrow \dfrac{-1}{2000}\left( 95 \right)+\dfrac{3}{20}+\dfrac{1}{2000}\left( 98 \right)-\dfrac{3}{20}=\dfrac{1}{2000}\left( 98-95 \right) \\
& \Rightarrow \dfrac{3}{2000}=0.00150 \\
\end{align}$.
Hence we can say that the estimated value is $0.00150$ and the calculator value is given as $0.00158$ .
The error percentage will be $%error=\dfrac{0.00150-0.00158}{0.00158}\Rightarrow 5%$ .
Hence we can say that the percentage error is $5%$ .
Therefore we can conclude that the estimated value of the given quantity $\dfrac{1}{\sqrt{95}}-\dfrac{1}{\sqrt{98}}$ using linear approximation is $0.00150$ and the value found with calculator is $0.00158$ and the error is $5%$.
Note: While answering this question we should be sure with our concept that we apply and the calculations we make. This is a question related to errors and approximations chapter. We can find the value of $\dfrac{1}{\sqrt{95}}$ and $\dfrac{1}{\sqrt{98}}$ as given
$\begin{align}
& \dfrac{1}{\sqrt{95}}=\dfrac{-1}{2000}\left( 95 \right)+\dfrac{3}{20} \\
& \Rightarrow \dfrac{1}{\sqrt{95}}=\dfrac{-95}{2000}+\dfrac{3}{20} \\
& \Rightarrow \dfrac{1}{\sqrt{95}}=-0.0475+0.15 \\
& \Rightarrow \dfrac{1}{\sqrt{95}}=-0.1025 \\
\end{align}$
and similarly
$\begin{align}
& \dfrac{1}{\sqrt{98}}=\dfrac{-1}{2000}\left( 98 \right)+\dfrac{3}{20} \\
& \Rightarrow \dfrac{1}{\sqrt{98}}=\dfrac{-98}{2000}+\dfrac{3}{20} \\
& \Rightarrow \dfrac{1}{\sqrt{98}}=-0.049+0.15 \\
& \Rightarrow \dfrac{1}{\sqrt{98}}=-0.101 \\
\end{align}$.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

