Answer
Verified
413.4k+ views
Hint : We are given with the radius of the planet with respect to the radius of earth and are asked to find the escape velocity of the planet. Thus, we will use the formula of escape velocity.
Formulae used:
$ {v_e} = \sqrt {\dfrac{{2G{M_p}}}{r}} $
Where, $ {v_e} $ is the escape velocity of a planet, $ G $ is the universal gravitational constant, $ {M_p} $ is the mass of the planet and $ r $ is the radius of the planet.
Complete step by step answer
For escape velocity of the earth, the formula turns out,
$ {v_e}_{_e} = \sqrt {\dfrac{{2G{M_e}}}{{{r_e}}}} \cdot \cdot \cdot \cdot (1) $
Where, $ {M_e} $ is the mass of earth and $ {r_e} $ is the radius of earth.
Similarly, for the planet
$ {v_{{e_p}}} = \sqrt {\dfrac{{2G{M_p}}}{{{r_p}}}} \cdot \cdot \cdot \cdot (2) $
Where, $ {M_p} $ is the mass of the planet and $ {r_p} $ is the radius of earth.
But,
According to the question,
$ {M_p} = {M_e} $ And $ {r_p} = \dfrac{1}{4} \times {r_e} $
Substituting these values in equation $ (2) $ , we get
$ {v_{{e_p}}} = \sqrt {\dfrac{{2G{M_e}}}{{\dfrac{1}{4} \times {r_e}}}} \cdot \cdot \cdot \cdot (3) $
Now,
Evaluating $ \dfrac{{(3)}}{{(1)}} $ , we get
$ \dfrac{{{v_{{e_p}}}}}{{{v_{{e_e}}}}} = \sqrt 4 = 2 $
Thus,
$ {v_{{e_p}}} = 2{v_{{e_e}}} $
We know,
$ {v_{{e_e}}} = 11.2km{s^{ - 1}} $
Thus,
$ {v_{{e_p}}} = 2 \times 11.2km{s^{ - 1}} = 22.4km{s^{ - 1}} $
Hence, the correct option is (C).
Note
The escape velocity of a planet is the velocity of a body which is required to escape the gravitational force of the planet. So for getting the formula of escape velocity, we can equate the energy of the body by virtue of its motion (kinetic energy) to the gravitational force multiplied by radius.
Thus,
$ K.E. = {F_G} \times r $
Further, we get
$ \dfrac{1}{2}m{v_e}^2 = \dfrac{{GMm}}{{{r^2}}} \times r $
After further evaluation, we get
$ {v_e} = \sqrt {\dfrac{{2GM}}{r}} $ .
Here, we are given that the mass of the earth and the planet are the same. But if the masses were different, then the case will be something different.
Formulae used:
$ {v_e} = \sqrt {\dfrac{{2G{M_p}}}{r}} $
Where, $ {v_e} $ is the escape velocity of a planet, $ G $ is the universal gravitational constant, $ {M_p} $ is the mass of the planet and $ r $ is the radius of the planet.
Complete step by step answer
For escape velocity of the earth, the formula turns out,
$ {v_e}_{_e} = \sqrt {\dfrac{{2G{M_e}}}{{{r_e}}}} \cdot \cdot \cdot \cdot (1) $
Where, $ {M_e} $ is the mass of earth and $ {r_e} $ is the radius of earth.
Similarly, for the planet
$ {v_{{e_p}}} = \sqrt {\dfrac{{2G{M_p}}}{{{r_p}}}} \cdot \cdot \cdot \cdot (2) $
Where, $ {M_p} $ is the mass of the planet and $ {r_p} $ is the radius of earth.
But,
According to the question,
$ {M_p} = {M_e} $ And $ {r_p} = \dfrac{1}{4} \times {r_e} $
Substituting these values in equation $ (2) $ , we get
$ {v_{{e_p}}} = \sqrt {\dfrac{{2G{M_e}}}{{\dfrac{1}{4} \times {r_e}}}} \cdot \cdot \cdot \cdot (3) $
Now,
Evaluating $ \dfrac{{(3)}}{{(1)}} $ , we get
$ \dfrac{{{v_{{e_p}}}}}{{{v_{{e_e}}}}} = \sqrt 4 = 2 $
Thus,
$ {v_{{e_p}}} = 2{v_{{e_e}}} $
We know,
$ {v_{{e_e}}} = 11.2km{s^{ - 1}} $
Thus,
$ {v_{{e_p}}} = 2 \times 11.2km{s^{ - 1}} = 22.4km{s^{ - 1}} $
Hence, the correct option is (C).
Note
The escape velocity of a planet is the velocity of a body which is required to escape the gravitational force of the planet. So for getting the formula of escape velocity, we can equate the energy of the body by virtue of its motion (kinetic energy) to the gravitational force multiplied by radius.
Thus,
$ K.E. = {F_G} \times r $
Further, we get
$ \dfrac{1}{2}m{v_e}^2 = \dfrac{{GMm}}{{{r^2}}} \times r $
After further evaluation, we get
$ {v_e} = \sqrt {\dfrac{{2GM}}{r}} $ .
Here, we are given that the mass of the earth and the planet are the same. But if the masses were different, then the case will be something different.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
A group of fish is known as class 7 english CBSE
The highest dam in India is A Bhakra dam B Tehri dam class 10 social science CBSE
Write all prime numbers between 80 and 100 class 8 maths CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Onam is the main festival of which state A Karnataka class 7 social science CBSE
Who administers the oath of office to the President class 10 social science CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Kolkata port is situated on the banks of river A Ganga class 9 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE