
What is the equivalent weight of\[{\text{N}}{{\text{a}}_{\text{2}}}{{\text{S}}_{\text{2}}}{{\text{O}}_{\text{3}}}{\text{.5}}{{\text{H}}_{\text{2}}}{\text{O}}\]?
A) 240 g
B) 246 g
C) 248 g
D) 250 g
Answer
569.7k+ views
Hint: To calculate the equivalent weight of the compound \[{\text{N}}{{\text{a}}_{\text{2}}}{{\text{S}}_{\text{2}}}{{\text{O}}_{\text{3}}}{\text{.5}}{{\text{H}}_{\text{2}}}{\text{O}}\], the value of the molecular weight compound \[{\text{N}}{{\text{a}}_{\text{2}}}{{\text{S}}_{\text{2}}}{{\text{O}}_{\text{3}}}{\text{.5}}{{\text{H}}_{\text{2}}}{\text{O}}\]and the number of electrons transfer (loss/gain) by the compound are required.
Formula Used:
${\text{Molecular weight = }}\sum {{\text{atomic weight}}} $
${\text{Equivalent weight = }}\dfrac{{{\text{Molecular weight }}}}{{{\text{Number of electrons transferred}}}}$
Complete answer:
Using the atomic weights of all atoms in \[{\text{N}}{{\text{a}}_{\text{2}}}{{\text{S}}_{\text{2}}}{{\text{O}}_{\text{3}}}{\text{.5}}{{\text{H}}_{\text{2}}}{\text{O}}\]calculate the molecular weight of the compound.
${\text{Molecular weight = }}\sum {{\text{atomic weight}}} $
Atomic weight of \[{\text{Na}}\]= 23.0g
Atomic weight of \[{\text{S}}\]= 32.0g
Atomic weight of ${\text{O}}$ = 16.0g
Atomic weight of ${\text{H}}$ = 32.0g
Now, substitute the values of atomic weights and calculate the molecular weight of \[{\text{N}}{{\text{a}}_{\text{2}}}{{\text{S}}_{\text{2}}}{{\text{O}}_{\text{3}}}{\text{.5}}{{\text{H}}_{\text{2}}}{\text{O}}\]as follows:
In the chemical formula of \[{\text{N}}{{\text{a}}_{\text{2}}}{{\text{S}}_{\text{2}}}{{\text{O}}_{\text{3}}}{\text{.5}}{{\text{H}}_{\text{2}}}{\text{O}}\] there are 2 \[{\text{Na}}\]atoms, 2 \[{\text{S}}\] atoms, 8 ${\text{O}}$ atoms and 10 ${\text{H}}$ atoms present.
\[{\text{Molecular weight of N}}{{\text{a}}_{\text{2}}}{{\text{S}}_{\text{2}}}{{\text{O}}_{\text{3}}}{\text{.5}}{{\text{H}}_{\text{2}}}{\text{O}} = 2(23.0{\text{g) + 2 (32}}{\text{.0 g) + 8(16}}{\text{.0 g) + 10(1}}{\text{.0g)}}\]
\[{\text{Molecular weight of N}}{{\text{a}}_{\text{2}}}{{\text{S}}_{\text{2}}}{{\text{O}}_{\text{3}}}{\text{.5}}{{\text{H}}_{\text{2}}}{\text{O}} = 248{\text{ g}}\]
Using the standard redox reaction of \[{\text{N}}{{\text{a}}_{\text{2}}}{{\text{S}}_{\text{2}}}{{\text{O}}_{\text{3}}}{\text{.5}}{{\text{H}}_{\text{2}}}{\text{O}}\]with ${{\text{I}}_{\text{2}}}$ we can determine the number of electrons transferred.
The standard balance reaction \[{\text{N}}{{\text{a}}_{\text{2}}}{{\text{S}}_{\text{2}}}{{\text{O}}_{\text{3}}}{\text{.5}}{{\text{H}}_{\text{2}}}{\text{O}}\] with ${{\text{I}}_{\text{2}}}$ is
${\text{2N}}{{\text{a}}_{\text{2}}}{{\text{S}}_{\text{2}}}{{\text{O}}_{\text{3}}}{\text{ + }}{{\text{I}}_{\text{2}}} \to {\text{N}}{{\text{a}}_{\text{2}}}{{\text{S}}_{\text{4}}}{{\text{O}}_{\text{6}}}{\text{ + 2NaI}}$
Here, 2 moles of ${\text{N}}{{\text{a}}_{\text{2}}}{{\text{S}}_{\text{2}}}{{\text{O}}_{\text{3}}}$ reacts with 1 mole of ${{\text{I}}_{\text{2}}}$ and gives 2 moles of${\text{NaI}}$.
The oxidation number of elemental ${{\text{I}}_{\text{2}}}$ is zero while the oxidation number of ${\text{I}}$ in ${\text{NaI}}$ is -1. So, to form 2 moles of ${\text{NaI}}$ there is a transfer of 2 electrons.
Thus, we can conclude that when 2 moles of ${\text{N}}{{\text{a}}_{\text{2}}}{{\text{S}}_{\text{2}}}{{\text{O}}_{\text{3}}}$ reacts there is a loss of 2 electrons.
\[{\text{2 moles of N}}{{\text{a}}_{\text{2}}}{{\text{S}}_{\text{2}}}{{\text{O}}_{\text{3}}} = 2{\text{ electrons}}\]
\[{\text{1 moles of N}}{{\text{a}}_{\text{2}}}{{\text{S}}_{\text{2}}}{{\text{O}}_{\text{3}}} = 1{\text{ electron}}\]
Now, using the molecular weight of \[{\text{N}}{{\text{a}}_{\text{2}}}{{\text{S}}_{\text{2}}}{{\text{O}}_{\text{3}}}{\text{.5}}{{\text{H}}_{\text{2}}}{\text{O}}\] and the number of electrons loss calculate the equivalent weight of \[{\text{N}}{{\text{a}}_{\text{2}}}{{\text{S}}_{\text{2}}}{{\text{O}}_{\text{3}}}{\text{.5}}{{\text{H}}_{\text{2}}}{\text{O}}\] as follows:
${\text{Equivalent weight = }}\dfrac{{{\text{Molecular weight }}}}{{{\text{Number of electrons transferred}}}}$
${\text{Equivalent weight of N}}{{\text{a}}_{\text{2}}}{{\text{S}}_{\text{2}}}{{\text{O}}_{\text{3}}}{\text{.5}}{{\text{H}}_{\text{2}}}{\text{O = }}\dfrac{{{\text{248 g }}}}{1} = 248{\text{ g}}$
Thus, the equivalent weight of \[{\text{N}}{{\text{a}}_{\text{2}}}{{\text{S}}_{\text{2}}}{{\text{O}}_{\text{3}}}{\text{.5}}{{\text{H}}_{\text{2}}}{\text{O}}\] is 248 g.
Hence, the correct answer is an option (C) 248 g.
Note:Equivalent weight of the compound depends on the number of electrons loss/gain. Use the oxidation number rules to determine the oxidation number of reacting species. The oxidation number of an element is always zero. The oxidation number of oxygen atom is always -2 except in peroxide it is -1. The oxidation number of a hydrogen atom is +1 except in metal hydride it is -1.
Formula Used:
${\text{Molecular weight = }}\sum {{\text{atomic weight}}} $
${\text{Equivalent weight = }}\dfrac{{{\text{Molecular weight }}}}{{{\text{Number of electrons transferred}}}}$
Complete answer:
Using the atomic weights of all atoms in \[{\text{N}}{{\text{a}}_{\text{2}}}{{\text{S}}_{\text{2}}}{{\text{O}}_{\text{3}}}{\text{.5}}{{\text{H}}_{\text{2}}}{\text{O}}\]calculate the molecular weight of the compound.
${\text{Molecular weight = }}\sum {{\text{atomic weight}}} $
Atomic weight of \[{\text{Na}}\]= 23.0g
Atomic weight of \[{\text{S}}\]= 32.0g
Atomic weight of ${\text{O}}$ = 16.0g
Atomic weight of ${\text{H}}$ = 32.0g
Now, substitute the values of atomic weights and calculate the molecular weight of \[{\text{N}}{{\text{a}}_{\text{2}}}{{\text{S}}_{\text{2}}}{{\text{O}}_{\text{3}}}{\text{.5}}{{\text{H}}_{\text{2}}}{\text{O}}\]as follows:
In the chemical formula of \[{\text{N}}{{\text{a}}_{\text{2}}}{{\text{S}}_{\text{2}}}{{\text{O}}_{\text{3}}}{\text{.5}}{{\text{H}}_{\text{2}}}{\text{O}}\] there are 2 \[{\text{Na}}\]atoms, 2 \[{\text{S}}\] atoms, 8 ${\text{O}}$ atoms and 10 ${\text{H}}$ atoms present.
\[{\text{Molecular weight of N}}{{\text{a}}_{\text{2}}}{{\text{S}}_{\text{2}}}{{\text{O}}_{\text{3}}}{\text{.5}}{{\text{H}}_{\text{2}}}{\text{O}} = 2(23.0{\text{g) + 2 (32}}{\text{.0 g) + 8(16}}{\text{.0 g) + 10(1}}{\text{.0g)}}\]
\[{\text{Molecular weight of N}}{{\text{a}}_{\text{2}}}{{\text{S}}_{\text{2}}}{{\text{O}}_{\text{3}}}{\text{.5}}{{\text{H}}_{\text{2}}}{\text{O}} = 248{\text{ g}}\]
Using the standard redox reaction of \[{\text{N}}{{\text{a}}_{\text{2}}}{{\text{S}}_{\text{2}}}{{\text{O}}_{\text{3}}}{\text{.5}}{{\text{H}}_{\text{2}}}{\text{O}}\]with ${{\text{I}}_{\text{2}}}$ we can determine the number of electrons transferred.
The standard balance reaction \[{\text{N}}{{\text{a}}_{\text{2}}}{{\text{S}}_{\text{2}}}{{\text{O}}_{\text{3}}}{\text{.5}}{{\text{H}}_{\text{2}}}{\text{O}}\] with ${{\text{I}}_{\text{2}}}$ is
${\text{2N}}{{\text{a}}_{\text{2}}}{{\text{S}}_{\text{2}}}{{\text{O}}_{\text{3}}}{\text{ + }}{{\text{I}}_{\text{2}}} \to {\text{N}}{{\text{a}}_{\text{2}}}{{\text{S}}_{\text{4}}}{{\text{O}}_{\text{6}}}{\text{ + 2NaI}}$
Here, 2 moles of ${\text{N}}{{\text{a}}_{\text{2}}}{{\text{S}}_{\text{2}}}{{\text{O}}_{\text{3}}}$ reacts with 1 mole of ${{\text{I}}_{\text{2}}}$ and gives 2 moles of${\text{NaI}}$.
The oxidation number of elemental ${{\text{I}}_{\text{2}}}$ is zero while the oxidation number of ${\text{I}}$ in ${\text{NaI}}$ is -1. So, to form 2 moles of ${\text{NaI}}$ there is a transfer of 2 electrons.
Thus, we can conclude that when 2 moles of ${\text{N}}{{\text{a}}_{\text{2}}}{{\text{S}}_{\text{2}}}{{\text{O}}_{\text{3}}}$ reacts there is a loss of 2 electrons.
\[{\text{2 moles of N}}{{\text{a}}_{\text{2}}}{{\text{S}}_{\text{2}}}{{\text{O}}_{\text{3}}} = 2{\text{ electrons}}\]
\[{\text{1 moles of N}}{{\text{a}}_{\text{2}}}{{\text{S}}_{\text{2}}}{{\text{O}}_{\text{3}}} = 1{\text{ electron}}\]
Now, using the molecular weight of \[{\text{N}}{{\text{a}}_{\text{2}}}{{\text{S}}_{\text{2}}}{{\text{O}}_{\text{3}}}{\text{.5}}{{\text{H}}_{\text{2}}}{\text{O}}\] and the number of electrons loss calculate the equivalent weight of \[{\text{N}}{{\text{a}}_{\text{2}}}{{\text{S}}_{\text{2}}}{{\text{O}}_{\text{3}}}{\text{.5}}{{\text{H}}_{\text{2}}}{\text{O}}\] as follows:
${\text{Equivalent weight = }}\dfrac{{{\text{Molecular weight }}}}{{{\text{Number of electrons transferred}}}}$
${\text{Equivalent weight of N}}{{\text{a}}_{\text{2}}}{{\text{S}}_{\text{2}}}{{\text{O}}_{\text{3}}}{\text{.5}}{{\text{H}}_{\text{2}}}{\text{O = }}\dfrac{{{\text{248 g }}}}{1} = 248{\text{ g}}$
Thus, the equivalent weight of \[{\text{N}}{{\text{a}}_{\text{2}}}{{\text{S}}_{\text{2}}}{{\text{O}}_{\text{3}}}{\text{.5}}{{\text{H}}_{\text{2}}}{\text{O}}\] is 248 g.
Hence, the correct answer is an option (C) 248 g.
Note:Equivalent weight of the compound depends on the number of electrons loss/gain. Use the oxidation number rules to determine the oxidation number of reacting species. The oxidation number of an element is always zero. The oxidation number of oxygen atom is always -2 except in peroxide it is -1. The oxidation number of a hydrogen atom is +1 except in metal hydride it is -1.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

