
What is the equivalent value of
$\dfrac{3+\cot {{76}^{\circ }}\cot {{16}^{\circ }}}{\cot {{76}^{\circ }}+\cot {{16}^{\circ }}}$
(a) $\tan {{44}^{\circ }}$
(b) $\cot {{46}^{\circ }}$
(c) $\tan {{2}^{\circ }}$
(d) $\tan {{46}^{\circ }}$
Answer
597.6k+ views
Hint: In this question, we are given the expression in terms of cot of ${{76}^{\circ }}$ and ${{16}^{\circ }}$. We should first try to convert all the trigonometric ratios in terms of sine and cosine and then use the trigonometric identities to simplify the given expression.
Complete step by step solution:
The expression given in the question is
$\dfrac{3+\cot {{76}^{\circ }}\cot {{16}^{\circ }}}{\cot {{76}^{\circ }}+\cot {{16}^{\circ }}}...............(1.1)$
As we know that cot is given by
$\cot \theta =\dfrac{\cos \theta }{\sin \theta }$
for any angle $\theta $, we can use it to rewrite equation (1.1) as
$\dfrac{3+\cot {{76}^{\circ }}\cot {{16}^{\circ }}}{\cot {{76}^{\circ }}+\cot {{16}^{\circ }}}=\dfrac{2+1+\dfrac{\cos {{76}^{\circ }}}{\sin {{76}^{\circ }}}\times \dfrac{\cos {{16}^{\circ }}}{\sin {{16}^{\circ }}}}{\dfrac{\cos {{76}^{\circ }}}{\sin {{76}^{\circ }}}+\dfrac{\cos {{16}^{\circ }}}{\sin {{16}^{\circ }}}}=\dfrac{2+\dfrac{\sin {{76}^{\circ }}\sin {{16}^{\circ }}+\cos {{76}^{\circ }}\cos {{16}^{\circ }}}{\sin {{76}^{\circ }}\sin {{16}^{\circ }}}}{\dfrac{\cos {{76}^{\circ }}\sin {{16}^{\circ }}+\cos {{16}^{\circ }}\sin {{76}^{\circ }}}{\sin {{76}^{\circ }}\sin {{16}^{\circ }}}}................(1.2)$
Now, from the trigonometric identities of cosine and sine of sum of angles, we have
$\begin{align}
& \cos (a-b)=\cos a\cos b+\sin a\sin b \\
& \sin (a+b)=\sin a\cos b+\cos a\sin b.................(1.3) \\
\end{align}$
Now, taking $a={{76}^{\circ }}$ and $b={{16}^{\circ }}$ in equation (1.3) and using it in equation (1.2), we get
\[\begin{align}
& \dfrac{3+\cot {{76}^{\circ }}\cot {{16}^{\circ }}}{\cot {{76}^{\circ }}+\cot {{16}^{\circ }}}=\dfrac{2+\dfrac{\sin {{76}^{\circ }}\sin {{16}^{\circ }}+\cos {{76}^{\circ }}\cos {{16}^{\circ }}}{\sin {{76}^{\circ }}\sin {{16}^{\circ }}}}{\dfrac{\cos {{76}^{\circ }}\sin {{16}^{\circ }}+\cos {{16}^{\circ }}\sin {{76}^{\circ }}}{\sin {{76}^{\circ }}\sin {{16}^{\circ }}}}=\dfrac{2+\dfrac{\cos \left( {{76}^{\circ }}-{{16}^{\circ }} \right)}{\sin {{76}^{\circ }}\sin {{16}^{\circ }}}}{\dfrac{\sin \left( {{76}^{\circ }}+{{16}^{\circ }} \right)}{\sin {{76}^{\circ }}\sin {{16}^{\circ }}}} \\
& =\dfrac{\dfrac{2\sin {{76}^{\circ }}\sin {{16}^{\circ }}+\cos \left( {{60}^{\circ }} \right)}{\sin {{76}^{\circ }}\sin {{16}^{\circ }}}}{\dfrac{\sin \left( {{92}^{\circ }} \right)}{\sin {{76}^{\circ }}\sin {{16}^{\circ }}}}................(1.3) \\
\end{align}\]
Now, we can cancel out \[\sin {{76}^{\circ }}\sin {{16}^{\circ }}\] from numerator and denominator to get
\[\begin{align}
& \dfrac{3+\cot {{76}^{\circ }}\cot {{16}^{\circ }}}{\cot {{76}^{\circ }}+\cot {{16}^{\circ }}} \\
& =\dfrac{2\sin {{76}^{\circ }}\sin {{16}^{\circ }}+\cos \left( {{60}^{\circ }} \right)}{\sin \left( {{92}^{\circ }} \right)}................(1.4) \\
\end{align}\]
Now, we can use the trigonometric identity
$2\sin \left( a \right)\sin \left( b \right)=-\cos \left( b+a \right)+\cos \left( b-a \right)$
If we take$b={{76}^{\circ }}$ and $a={{16}^{\circ }}$ to obtain
$\begin{align}
& 2\sin \left( {{76}^{\circ }} \right)\sin \left( {{16}^{\circ }} \right)=-\cos \left( {{76}^{\circ }}+{{16}^{\circ }} \right)+\cos \left( {{76}^{\circ }}-{{16}^{\circ }} \right) \\
& =-\cos \left( {{92}^{\circ }} \right)+\cos \left( {{60}^{\circ }} \right)...............(1.5) \\
\end{align}$
We can now use equation (1.5) in equation (1.4) to obtain
\[\begin{align}
& \dfrac{3+\cot {{76}^{\circ }}\cot {{16}^{\circ }}}{\cot {{76}^{\circ }}+\cot {{16}^{\circ }}} \\
& =\dfrac{2\sin {{76}^{\circ }}\sin {{16}^{\circ }}+\cos \left( {{60}^{\circ }} \right)}{\sin \left( {{92}^{\circ }} \right)}=\dfrac{-\cos \left( {{92}^{\circ }} \right)+\cos \left( {{60}^{\circ }} \right)+\cos \left( {{60}^{\circ }} \right)}{\sin \left( {{92}^{\circ }} \right)} \\
& =\dfrac{-\cos \left( {{92}^{\circ }} \right)+\dfrac{1}{2}+\dfrac{1}{2}}{\sin \left( {{92}^{\circ }} \right)}=\dfrac{1-\cos \left( {{92}^{\circ }} \right)}{\sin \left( {{92}^{\circ }} \right)}................(1.6) \\
\end{align}\]
Again, we know the formula
$2{{\sin }^{2}}\theta =1-\cos \left( 2\theta \right)................(1.7)$
And $\sin \left( 2\theta \right)=2\sin \theta \cos \theta ...............(1.8)$
Thus, taking $\theta ={{46}^{\circ }}\Rightarrow 2\theta ={{92}^{\circ }}$ in equation (1.7) and (1.8) and using it in (1.6), we obtain
\[\dfrac{3+\cot {{76}^{\circ }}\cot {{16}^{\circ }}}{\cot {{76}^{\circ }}+\cot {{16}^{\circ }}}=\dfrac{1-\cos \left( {{92}^{\circ }} \right)}{\sin \left( {{92}^{\circ }} \right)}=\dfrac{2{{\sin }^{2}}\left( {{46}^{\circ }} \right)}{2\sin \left( {{46}^{\circ }} \right)\cos \left( {{46}^{\circ }} \right)}................(1.9)\]
Cancelling $\sin \left( {{46}^{\circ }} \right)$ from numerator and denominator, we obtain
\[\dfrac{3+\cot {{76}^{\circ }}\cot {{16}^{\circ }}}{\cot {{76}^{\circ }}+\cot {{16}^{\circ }}}=\dfrac{1-\cos \left( {{92}^{\circ }} \right)}{\sin \left( {{92}^{\circ }} \right)}=\dfrac{\sin \left( {{46}^{\circ }} \right)}{\cos \left( {{46}^{\circ }} \right)}=\tan \left( {{46}^{\circ }} \right)\]
Which matches option (d) of the given question. Hence (d) is the correct answer to this question.
Note: We should note that we have converted everything in terms of sin and cos to solve this question. However, one can also convert the terms into other trigonometric ratios such as tan and cot and use their relations to solve this question. However, the final answer will remain the same in all the methods.
Complete step by step solution:
The expression given in the question is
$\dfrac{3+\cot {{76}^{\circ }}\cot {{16}^{\circ }}}{\cot {{76}^{\circ }}+\cot {{16}^{\circ }}}...............(1.1)$
As we know that cot is given by
$\cot \theta =\dfrac{\cos \theta }{\sin \theta }$
for any angle $\theta $, we can use it to rewrite equation (1.1) as
$\dfrac{3+\cot {{76}^{\circ }}\cot {{16}^{\circ }}}{\cot {{76}^{\circ }}+\cot {{16}^{\circ }}}=\dfrac{2+1+\dfrac{\cos {{76}^{\circ }}}{\sin {{76}^{\circ }}}\times \dfrac{\cos {{16}^{\circ }}}{\sin {{16}^{\circ }}}}{\dfrac{\cos {{76}^{\circ }}}{\sin {{76}^{\circ }}}+\dfrac{\cos {{16}^{\circ }}}{\sin {{16}^{\circ }}}}=\dfrac{2+\dfrac{\sin {{76}^{\circ }}\sin {{16}^{\circ }}+\cos {{76}^{\circ }}\cos {{16}^{\circ }}}{\sin {{76}^{\circ }}\sin {{16}^{\circ }}}}{\dfrac{\cos {{76}^{\circ }}\sin {{16}^{\circ }}+\cos {{16}^{\circ }}\sin {{76}^{\circ }}}{\sin {{76}^{\circ }}\sin {{16}^{\circ }}}}................(1.2)$
Now, from the trigonometric identities of cosine and sine of sum of angles, we have
$\begin{align}
& \cos (a-b)=\cos a\cos b+\sin a\sin b \\
& \sin (a+b)=\sin a\cos b+\cos a\sin b.................(1.3) \\
\end{align}$
Now, taking $a={{76}^{\circ }}$ and $b={{16}^{\circ }}$ in equation (1.3) and using it in equation (1.2), we get
\[\begin{align}
& \dfrac{3+\cot {{76}^{\circ }}\cot {{16}^{\circ }}}{\cot {{76}^{\circ }}+\cot {{16}^{\circ }}}=\dfrac{2+\dfrac{\sin {{76}^{\circ }}\sin {{16}^{\circ }}+\cos {{76}^{\circ }}\cos {{16}^{\circ }}}{\sin {{76}^{\circ }}\sin {{16}^{\circ }}}}{\dfrac{\cos {{76}^{\circ }}\sin {{16}^{\circ }}+\cos {{16}^{\circ }}\sin {{76}^{\circ }}}{\sin {{76}^{\circ }}\sin {{16}^{\circ }}}}=\dfrac{2+\dfrac{\cos \left( {{76}^{\circ }}-{{16}^{\circ }} \right)}{\sin {{76}^{\circ }}\sin {{16}^{\circ }}}}{\dfrac{\sin \left( {{76}^{\circ }}+{{16}^{\circ }} \right)}{\sin {{76}^{\circ }}\sin {{16}^{\circ }}}} \\
& =\dfrac{\dfrac{2\sin {{76}^{\circ }}\sin {{16}^{\circ }}+\cos \left( {{60}^{\circ }} \right)}{\sin {{76}^{\circ }}\sin {{16}^{\circ }}}}{\dfrac{\sin \left( {{92}^{\circ }} \right)}{\sin {{76}^{\circ }}\sin {{16}^{\circ }}}}................(1.3) \\
\end{align}\]
Now, we can cancel out \[\sin {{76}^{\circ }}\sin {{16}^{\circ }}\] from numerator and denominator to get
\[\begin{align}
& \dfrac{3+\cot {{76}^{\circ }}\cot {{16}^{\circ }}}{\cot {{76}^{\circ }}+\cot {{16}^{\circ }}} \\
& =\dfrac{2\sin {{76}^{\circ }}\sin {{16}^{\circ }}+\cos \left( {{60}^{\circ }} \right)}{\sin \left( {{92}^{\circ }} \right)}................(1.4) \\
\end{align}\]
Now, we can use the trigonometric identity
$2\sin \left( a \right)\sin \left( b \right)=-\cos \left( b+a \right)+\cos \left( b-a \right)$
If we take$b={{76}^{\circ }}$ and $a={{16}^{\circ }}$ to obtain
$\begin{align}
& 2\sin \left( {{76}^{\circ }} \right)\sin \left( {{16}^{\circ }} \right)=-\cos \left( {{76}^{\circ }}+{{16}^{\circ }} \right)+\cos \left( {{76}^{\circ }}-{{16}^{\circ }} \right) \\
& =-\cos \left( {{92}^{\circ }} \right)+\cos \left( {{60}^{\circ }} \right)...............(1.5) \\
\end{align}$
We can now use equation (1.5) in equation (1.4) to obtain
\[\begin{align}
& \dfrac{3+\cot {{76}^{\circ }}\cot {{16}^{\circ }}}{\cot {{76}^{\circ }}+\cot {{16}^{\circ }}} \\
& =\dfrac{2\sin {{76}^{\circ }}\sin {{16}^{\circ }}+\cos \left( {{60}^{\circ }} \right)}{\sin \left( {{92}^{\circ }} \right)}=\dfrac{-\cos \left( {{92}^{\circ }} \right)+\cos \left( {{60}^{\circ }} \right)+\cos \left( {{60}^{\circ }} \right)}{\sin \left( {{92}^{\circ }} \right)} \\
& =\dfrac{-\cos \left( {{92}^{\circ }} \right)+\dfrac{1}{2}+\dfrac{1}{2}}{\sin \left( {{92}^{\circ }} \right)}=\dfrac{1-\cos \left( {{92}^{\circ }} \right)}{\sin \left( {{92}^{\circ }} \right)}................(1.6) \\
\end{align}\]
Again, we know the formula
$2{{\sin }^{2}}\theta =1-\cos \left( 2\theta \right)................(1.7)$
And $\sin \left( 2\theta \right)=2\sin \theta \cos \theta ...............(1.8)$
Thus, taking $\theta ={{46}^{\circ }}\Rightarrow 2\theta ={{92}^{\circ }}$ in equation (1.7) and (1.8) and using it in (1.6), we obtain
\[\dfrac{3+\cot {{76}^{\circ }}\cot {{16}^{\circ }}}{\cot {{76}^{\circ }}+\cot {{16}^{\circ }}}=\dfrac{1-\cos \left( {{92}^{\circ }} \right)}{\sin \left( {{92}^{\circ }} \right)}=\dfrac{2{{\sin }^{2}}\left( {{46}^{\circ }} \right)}{2\sin \left( {{46}^{\circ }} \right)\cos \left( {{46}^{\circ }} \right)}................(1.9)\]
Cancelling $\sin \left( {{46}^{\circ }} \right)$ from numerator and denominator, we obtain
\[\dfrac{3+\cot {{76}^{\circ }}\cot {{16}^{\circ }}}{\cot {{76}^{\circ }}+\cot {{16}^{\circ }}}=\dfrac{1-\cos \left( {{92}^{\circ }} \right)}{\sin \left( {{92}^{\circ }} \right)}=\dfrac{\sin \left( {{46}^{\circ }} \right)}{\cos \left( {{46}^{\circ }} \right)}=\tan \left( {{46}^{\circ }} \right)\]
Which matches option (d) of the given question. Hence (d) is the correct answer to this question.
Note: We should note that we have converted everything in terms of sin and cos to solve this question. However, one can also convert the terms into other trigonometric ratios such as tan and cot and use their relations to solve this question. However, the final answer will remain the same in all the methods.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

