
Equivalence proposition of $p \Leftrightarrow q$ is
Answer
573.9k+ views
Hint: If there are two statements such as $p$ and $q$ then the compound statement $\left( {p \Rightarrow q} \right) \wedge \left( {q \Rightarrow p} \right)$ means that $p$ implies $q$ and $q$ implies $p$, this is called a Bi-conditional statement or Equivalence. It is denoted by $p \Leftrightarrow q$ or $p \equiv q$. For two propositions to be Logically Equivalent they should have the identical truth tables.
Symbols used and their meanings:
$p \Rightarrow q$ means p implies q and it is a Conditional connective.
$p \wedge q$ means p and q and it is a Conjunction connective.
$p \vee q$ means p or q and it is a Disjunction connective.
$p \Leftrightarrow q$ means p if and only if q and it is a Biconditional connective.
Complete step by step solution
Given:
$p$ and $q$ are two statements then using the Logical Equivalences Involving Bi-conditional Statements $p \Leftrightarrow q$ can be written as:
$\left( {p \Rightarrow q} \right) \wedge \left( {q \Rightarrow p} \right)$
Now we have to prepare a truth table for $p \Leftrightarrow q$ on the basis of truth tables for $ \Rightarrow $ and $ \wedge $ which includes all the variables.
From the truth table it is clear that the propositions are logically equivalent. So, the logically equivalent proposition of $p \Leftrightarrow q$ is $\left( {p \wedge q} \right) \Rightarrow \left( {p \vee q} \right)$.
Note: It may be noted that from the table that $p \Leftrightarrow q$ is true only when either both $p$ and $q$ are true or both are false. Also, from the truth tables it is confirmed that the given propositions are logically equivalent because they have the identical truth tables.
Symbols used and their meanings:
$p \Rightarrow q$ means p implies q and it is a Conditional connective.
$p \wedge q$ means p and q and it is a Conjunction connective.
$p \vee q$ means p or q and it is a Disjunction connective.
$p \Leftrightarrow q$ means p if and only if q and it is a Biconditional connective.
Complete step by step solution
Given:
$p$ and $q$ are two statements then using the Logical Equivalences Involving Bi-conditional Statements $p \Leftrightarrow q$ can be written as:
$\left( {p \Rightarrow q} \right) \wedge \left( {q \Rightarrow p} \right)$
Now we have to prepare a truth table for $p \Leftrightarrow q$ on the basis of truth tables for $ \Rightarrow $ and $ \wedge $ which includes all the variables.
| $p$ | $q$ | $p \Leftrightarrow q$ | $\left( {p \vee q} \right) \vee \left( {p \wedge q} \right)$ | $\left( {p \Rightarrow q} \right) \wedge \left( {p \Rightarrow q} \right)$ | $\left( {p \wedge q} \right) \vee \left( {p \Rightarrow q} \right)$ | \[\left( {p \wedge q} \right) \Rightarrow \left( {p \vee q} \right)\] |
| T | T | T | T | T | T | T |
| T | F | F | T | F | F | T |
| F | T | F | T | T | T | T |
| F | F | T | F | T | T | T |
From the truth table it is clear that the propositions are logically equivalent. So, the logically equivalent proposition of $p \Leftrightarrow q$ is $\left( {p \wedge q} \right) \Rightarrow \left( {p \vee q} \right)$.
Note: It may be noted that from the table that $p \Leftrightarrow q$ is true only when either both $p$ and $q$ are true or both are false. Also, from the truth tables it is confirmed that the given propositions are logically equivalent because they have the identical truth tables.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

