
Equilibrium Constant ${{\text{K}}_{\text{1}}}$and ${{\text{K}}_{2}}$for the following equilibria are related as:
a.\[\text{N}{{\text{O}}_{\left( \text{g} \right)}}\text{ + }\dfrac{\text{1}}{\text{2}}{{\text{O}}_{\text{2}}}_{\left( \text{g} \right)}\rightleftharpoons \text{N}{{\text{O}}_{\text{2}}}_{\left( \text{g} \right)}\]
b.$\text{2N}{{\text{O}}_{\text{2}}}_{\left( \text{g} \right)}\rightleftharpoons \text{2N}{{\text{O}}_{\left( \text{g} \right)}}\text{+ }{{\text{O}}_{\text{2}}}_{\left( \text{g} \right)}$
A.${{\text{K}}_{\text{1}}}\text{=}\sqrt{{{\text{K}}_{\text{2}}}}$
B.${{\text{K}}_{2}}\text{=}\frac{\text{1}}{{{\text{K}}_{1}}}$
C.${{\text{K}}_{\text{1}}}\text{= 2}{{\text{K}}_{\text{2}}}$
D.${{\text{K}}_{2}}\text{=}\frac{\text{1}}{\text{K}_{1}^{2}}$
Answer
546.3k+ views
Hint:When the rates of the forward reaction and the backward reaction become equal then there exists a dynamic equilibrium in the reaction medium. The equilibrium is guided by different parameters such as the temperature, pressure, concentrations, etc.
Complete step by step answer:
The equilibrium constant is equal to the ratio of the concentration of the products to the concentration of the reactants raised to their stoichiometric coefficient in the balanced rate equation.
As per the given equations, the equilibrium constant for the first equation,
\[\text{N}{{\text{O}}_{\left( \text{g} \right)}}\text{ + }\dfrac{\text{1}}{\text{2}}{{\text{O}}_{\text{2}}}_{\left( \text{g} \right)}\rightleftharpoons \text{N}{{\text{O}}_{\text{2}}}_{\left( \text{g} \right)}\] is:
${{\text{K}}_{\text{1}}}\text{=}\dfrac{\left[ \text{N}{{\text{O}}_{\text{2}}} \right]}{\left[ \text{NO} \right]{{\left[ {{\text{O}}_{\text{2}}} \right]}^{\dfrac{\text{1}}{\text{2}}}}}$$\Rightarrow \left[ \text{N}{{\text{O}}_{\text{2}}} \right]\text{=}{{\text{K}}_{\text{1}}}\left[ \text{NO} \right]{{\left[ {{\text{O}}_{\text{2}}} \right]}^{\dfrac{\text{1}}{\text{2}}}}$…… 1
For the second reaction $\text{2N}{{\text{O}}_{\text{2}}}_{\left( \text{g} \right)}\rightleftharpoons \text{2N}{{\text{O}}_{\left( \text{g} \right)}}\text{+ }{{\text{O}}_{\text{2}}}_{\left( \text{g} \right)}$,
\[{{\text{K}}_{2}}\text{=}\dfrac{{{\left[ \text{NO} \right]}^{2}}\left[ {{\text{O}}_{\text{2}}} \right]}{{{\left[ \text{N}{{\text{O}}_{\text{2}}} \right]}^{2}}}\]\[\Rightarrow \left[ \text{N}{{\text{O}}_{\text{2}}} \right]\text{=}\sqrt{\dfrac{{{\left[ \text{NO} \right]}^{2}}\left[ {{\text{O}}_{\text{2}}} \right]}{{{\text{K}}_{2}}}}\]……2
Equating, equation 1 and 2, we get,
${{\text{K}}_{\text{1}}}\left[ \text{NO} \right]{{\left[ {{\text{O}}_{\text{2}}} \right]}^{\dfrac{\text{1}}{\text{2}}}}=\sqrt{\dfrac{{{\left[ \text{NO} \right]}^{2}}\left[ {{\text{O}}_{\text{2}}} \right]}{{{\text{K}}_{2}}}}$
$\Rightarrow {{\text{K}}_{\text{1}}}\left[ \text{NO} \right]{{\left[ {{\text{O}}_{\text{2}}} \right]}^{\dfrac{\text{1}}{\text{2}}}}=\left[ \text{NO} \right]{{\left[ {{\text{O}}_{\text{2}}} \right]}^{\dfrac{\text{1}}{\text{2}}}}\sqrt{\dfrac{1}{{{\text{K}}_{2}}}}$
Solving this:
$\Rightarrow {{\text{K}}_{\text{1}}}=\sqrt{\dfrac{1}{{{\text{K}}_{2}}}}$
$\Rightarrow {{\text{K}}_{2}}\text{=}\dfrac{\text{1}}{\text{K}_{1}^{2}}$
Therefore, the correct answer is option D.
Note:
There are different types of equilibrium constants depending upon the type of the reactants involved. Stepwise formation constants are those types of equilibrium constants in which the equilibrium concentration of the reactants and the products involved in each step is written.
The association and the dissociation constants are those that show the concentrations of the dissociations and associations. In case of complex reactions, the equilibrium constant involves the concentration of the metal complex formed after the reaction and the concentration of the metal ions and the ligands present in the medium before the reaction and are called “the stability constants.”
Hydrolysis constants denote the concentrations of the hydroxide ion and the hydronium ion that is formed in the medium due to the dissociation in the aqueous solutions.
Complete step by step answer:
The equilibrium constant is equal to the ratio of the concentration of the products to the concentration of the reactants raised to their stoichiometric coefficient in the balanced rate equation.
As per the given equations, the equilibrium constant for the first equation,
\[\text{N}{{\text{O}}_{\left( \text{g} \right)}}\text{ + }\dfrac{\text{1}}{\text{2}}{{\text{O}}_{\text{2}}}_{\left( \text{g} \right)}\rightleftharpoons \text{N}{{\text{O}}_{\text{2}}}_{\left( \text{g} \right)}\] is:
${{\text{K}}_{\text{1}}}\text{=}\dfrac{\left[ \text{N}{{\text{O}}_{\text{2}}} \right]}{\left[ \text{NO} \right]{{\left[ {{\text{O}}_{\text{2}}} \right]}^{\dfrac{\text{1}}{\text{2}}}}}$$\Rightarrow \left[ \text{N}{{\text{O}}_{\text{2}}} \right]\text{=}{{\text{K}}_{\text{1}}}\left[ \text{NO} \right]{{\left[ {{\text{O}}_{\text{2}}} \right]}^{\dfrac{\text{1}}{\text{2}}}}$…… 1
For the second reaction $\text{2N}{{\text{O}}_{\text{2}}}_{\left( \text{g} \right)}\rightleftharpoons \text{2N}{{\text{O}}_{\left( \text{g} \right)}}\text{+ }{{\text{O}}_{\text{2}}}_{\left( \text{g} \right)}$,
\[{{\text{K}}_{2}}\text{=}\dfrac{{{\left[ \text{NO} \right]}^{2}}\left[ {{\text{O}}_{\text{2}}} \right]}{{{\left[ \text{N}{{\text{O}}_{\text{2}}} \right]}^{2}}}\]\[\Rightarrow \left[ \text{N}{{\text{O}}_{\text{2}}} \right]\text{=}\sqrt{\dfrac{{{\left[ \text{NO} \right]}^{2}}\left[ {{\text{O}}_{\text{2}}} \right]}{{{\text{K}}_{2}}}}\]……2
Equating, equation 1 and 2, we get,
${{\text{K}}_{\text{1}}}\left[ \text{NO} \right]{{\left[ {{\text{O}}_{\text{2}}} \right]}^{\dfrac{\text{1}}{\text{2}}}}=\sqrt{\dfrac{{{\left[ \text{NO} \right]}^{2}}\left[ {{\text{O}}_{\text{2}}} \right]}{{{\text{K}}_{2}}}}$
$\Rightarrow {{\text{K}}_{\text{1}}}\left[ \text{NO} \right]{{\left[ {{\text{O}}_{\text{2}}} \right]}^{\dfrac{\text{1}}{\text{2}}}}=\left[ \text{NO} \right]{{\left[ {{\text{O}}_{\text{2}}} \right]}^{\dfrac{\text{1}}{\text{2}}}}\sqrt{\dfrac{1}{{{\text{K}}_{2}}}}$
Solving this:
$\Rightarrow {{\text{K}}_{\text{1}}}=\sqrt{\dfrac{1}{{{\text{K}}_{2}}}}$
$\Rightarrow {{\text{K}}_{2}}\text{=}\dfrac{\text{1}}{\text{K}_{1}^{2}}$
Therefore, the correct answer is option D.
Note:
There are different types of equilibrium constants depending upon the type of the reactants involved. Stepwise formation constants are those types of equilibrium constants in which the equilibrium concentration of the reactants and the products involved in each step is written.
The association and the dissociation constants are those that show the concentrations of the dissociations and associations. In case of complex reactions, the equilibrium constant involves the concentration of the metal complex formed after the reaction and the concentration of the metal ions and the ligands present in the medium before the reaction and are called “the stability constants.”
Hydrolysis constants denote the concentrations of the hydroxide ion and the hydronium ion that is formed in the medium due to the dissociation in the aqueous solutions.
Recently Updated Pages
Master Class 11 Chemistry: Engaging Questions & Answers for Success

Which is the Longest Railway Platform in the world?

India Manned Space Mission Launch Target Month and Year 2025 Update

Which of the following pairs is correct?

The Turko-Afghan rule in India lasted for about?

Who wrote the novel "Pride and Prejudice"?

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which type of resource is iron ore A Renewable B Biotic class 11 social science CBSE

10 examples of friction in our daily life

Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

