
Equation of oblique projectile can be written as:
Answer
510.6k+ views
Hint: In oblique projectile, horizontal plane of projectile motion is at some angle with the x- axis. As we get the equation of motion of the oblique projectile, we will simplify it in terms of x, R (range) and the angle of the projectile. First, we will multiply sin terms in the second term of the right-hand side of the equation, then simplify to make a formula of range in the denominator. This gives another form of equation of motion.
Complete answer:
A projectile is thrown with the velocity u at an angle $\theta$ with the x-axis. The velocity u can be resolved into two components $u cos \theta$ component along X-axis and $u sin \theta$ component along Y-axis.
$u_{x} = u cos \theta$ and $u_{y} = u sin \theta$
Equation of trajectory is:
$ y = x tan \theta - \dfrac{g x^{2} }{2 u^{2}cos^{2} \theta }$
Multiply by $sin \theta$ in the second term of the right-hand side.
$ y = x tan \theta - \dfrac{ x^{2} sin \theta }{\dfrac{2 sin \theta u^{2}cos^{2} \theta }{g} }$
$\implies y = x tan \theta - \dfrac{ x^{2} sin \theta }{ cos \theta \dfrac{ u^{2}sin 2 \theta }{g} }$
$\implies y = x tan \theta - \dfrac{x^{2} tan \theta}{R}$, R is the range of projectiles.
$\implies y = x tan \theta \left( 1 - \dfrac{x}{R} \right)$
Equation of oblique projectile can be written as
$ y = x tan \theta \left( 1 - \dfrac{x}{R} \right)$
Note:
When a particle is dropped in the air with speed, the only force performing on it during its air time is the acceleration due to gravity acting vertically downwards. There is no acceleration in the horizontal, which means that the particle's velocity in the horizontal direction lives constantly.
Complete answer:
A projectile is thrown with the velocity u at an angle $\theta$ with the x-axis. The velocity u can be resolved into two components $u cos \theta$ component along X-axis and $u sin \theta$ component along Y-axis.
$u_{x} = u cos \theta$ and $u_{y} = u sin \theta$
Equation of trajectory is:
$ y = x tan \theta - \dfrac{g x^{2} }{2 u^{2}cos^{2} \theta }$
Multiply by $sin \theta$ in the second term of the right-hand side.
$ y = x tan \theta - \dfrac{ x^{2} sin \theta }{\dfrac{2 sin \theta u^{2}cos^{2} \theta }{g} }$
$\implies y = x tan \theta - \dfrac{ x^{2} sin \theta }{ cos \theta \dfrac{ u^{2}sin 2 \theta }{g} }$
$\implies y = x tan \theta - \dfrac{x^{2} tan \theta}{R}$, R is the range of projectiles.
$\implies y = x tan \theta \left( 1 - \dfrac{x}{R} \right)$
Equation of oblique projectile can be written as
$ y = x tan \theta \left( 1 - \dfrac{x}{R} \right)$
Note:
When a particle is dropped in the air with speed, the only force performing on it during its air time is the acceleration due to gravity acting vertically downwards. There is no acceleration in the horizontal, which means that the particle's velocity in the horizontal direction lives constantly.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

What is periodicity class 11 chemistry CBSE

Explain zero factorial class 11 maths CBSE

What is a periderm How does periderm formation take class 11 biology CBSE

Mention the basic forces in nature class 11 physics CBSE

