
What is equal to \[\tan \left( \dfrac{\pi }{12} \right)\]?
A. \[2-\sqrt{3}\]
B. \[2+\sqrt{3}\]
C. \[\sqrt{2}-\sqrt{3}\]
D. \[\sqrt{3}-\sqrt{2}\]
Answer
619.5k+ views
Hint: To solve the question, we have to apply trigonometric identities and the values of trigonometric functions to arrive at the value of \[\tan \left( \dfrac{\pi }{12} \right)\].
Complete step-by-step answer:
We know that the formula for \[\tan 2\alpha \] is given by \[\dfrac{2\tan \alpha }{1-{{\tan }^{2}}\alpha }\]
By substituting \[\alpha =\dfrac{\pi }{12}\] in the above formula we get
\[\tan \left( \dfrac{2\pi }{12} \right)=\dfrac{2\tan \left( \dfrac{\pi }{12} \right)}{1-{{\left( \tan \left( \dfrac{\pi }{12} \right) \right)}^{2}}}\]
\[\tan \left( \dfrac{\pi }{6} \right)=\dfrac{2\tan \left( \dfrac{\pi }{12} \right)}{1-{{\left( \tan \left( \dfrac{\pi }{12} \right) \right)}^{2}}}\] …….. (1)
We know that the value of \[\tan \left( \dfrac{\pi }{6} \right)\] is equal to \[\dfrac{1}{\sqrt{3}}\]
By substituting the above mentioned value in equation (1) we get,
\[\dfrac{1}{\sqrt{3}}=\dfrac{2\tan \left( \dfrac{\pi }{12} \right)}{1-{{\left( \tan \left( \dfrac{\pi }{12} \right) \right)}^{2}}}\]
Cross multiply the above expression to obtain a quadratic expression of \[\tan \left( \dfrac{\pi }{12} \right)\].
\[1-{{\left( \tan \left( \dfrac{\pi }{12} \right) \right)}^{2}}=\sqrt{3}\left( 2\tan \left( \dfrac{\pi }{12} \right) \right)\]
\[{{\left( \tan \left( \dfrac{\pi }{12} \right) \right)}^{2}}+2\sqrt{3}\left( \tan \left( \dfrac{\pi }{12} \right) \right)-1=0\] …….. (2)
We know that the solutions of the general quadratic expression \[a{{x}^{2}}+bx+c=0\] are given by \[\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}\]
On comparing the above expression with equation (2) we get,
The values of a = 1, b = \[2\sqrt{3}\], c = -1
Thus, the possible values of \[\tan \left( \dfrac{\pi }{12} \right)\] are equal to \[\dfrac{-2\sqrt{3}\pm \sqrt{{{\left( 2\sqrt{3} \right)}^{2}}-4(1)(-1)}}{2(1)}\]
We know that \[{{\left( ab \right)}^{m}}={{a}^{m}}\times {{b}^{m}}\]
\[=\dfrac{-2\sqrt{3}\pm \sqrt{\left( {{2}^{2}}\times 3 \right)+4}}{2}\]
\[=\dfrac{-2\sqrt{3}\pm \sqrt{12+4}}{2}\]
\[=\dfrac{-2\sqrt{3}\pm \sqrt{16}}{2}\]
\[=\dfrac{-2\sqrt{3}\pm 4}{2}\]
Since we know that the value of \[\sqrt{16}=\sqrt{4\times 4}=\sqrt{{{4}^{2}}}=4\].
\[\Rightarrow \tan \left( \dfrac{\pi }{12} \right)=\dfrac{2\left( -\sqrt{3}\pm 2 \right)}{2}\]
\[\tan \left( \dfrac{\pi }{12} \right)=-\sqrt{3}\pm 2\]
We know that \[\tan \alpha \] is positive in the interval \[0<\alpha <\dfrac{\pi }{2}\] . Thus, we get
\[\tan \left( \dfrac{\pi }{12} \right)=2-\sqrt{3}\]
\[\therefore \] The value of \[\tan \left( \dfrac{\pi }{12} \right)\] is equal to \[2-\sqrt{3}\]
Note: The possibility of mistake can be the calculation since the procedure of solving requires square root terms. The other possibility of mistake is not being able to choose the correct answer out of the obtained two values. The alternative way of solving can be, to calculate the value of \[\cos \left( \dfrac{\pi }{12} \right),\sin \left( \dfrac{\pi }{12} \right)\] since we know the value of \[\cos \left( \dfrac{\pi }{6} \right)\] is equal to \[\dfrac{\sqrt{3}}{2}\] . By substituting the values in the formula \[\cos 2\alpha =2{{\cos }^{2}}\alpha -1=1-2{{\sin }^{2}}\alpha \] , we can calculate the value of \[\cos \left( \dfrac{\pi }{12} \right),\sin \left( \dfrac{\pi }{12} \right)\]. Using the formula \[\tan \alpha =\dfrac{\sin \alpha }{\cos \alpha }\] we can calculate the value of \[\tan \left( \dfrac{\pi }{12} \right)\]. This method eases the procedure of solving.
Complete step-by-step answer:
We know that the formula for \[\tan 2\alpha \] is given by \[\dfrac{2\tan \alpha }{1-{{\tan }^{2}}\alpha }\]
By substituting \[\alpha =\dfrac{\pi }{12}\] in the above formula we get
\[\tan \left( \dfrac{2\pi }{12} \right)=\dfrac{2\tan \left( \dfrac{\pi }{12} \right)}{1-{{\left( \tan \left( \dfrac{\pi }{12} \right) \right)}^{2}}}\]
\[\tan \left( \dfrac{\pi }{6} \right)=\dfrac{2\tan \left( \dfrac{\pi }{12} \right)}{1-{{\left( \tan \left( \dfrac{\pi }{12} \right) \right)}^{2}}}\] …….. (1)
We know that the value of \[\tan \left( \dfrac{\pi }{6} \right)\] is equal to \[\dfrac{1}{\sqrt{3}}\]
By substituting the above mentioned value in equation (1) we get,
\[\dfrac{1}{\sqrt{3}}=\dfrac{2\tan \left( \dfrac{\pi }{12} \right)}{1-{{\left( \tan \left( \dfrac{\pi }{12} \right) \right)}^{2}}}\]
Cross multiply the above expression to obtain a quadratic expression of \[\tan \left( \dfrac{\pi }{12} \right)\].
\[1-{{\left( \tan \left( \dfrac{\pi }{12} \right) \right)}^{2}}=\sqrt{3}\left( 2\tan \left( \dfrac{\pi }{12} \right) \right)\]
\[{{\left( \tan \left( \dfrac{\pi }{12} \right) \right)}^{2}}+2\sqrt{3}\left( \tan \left( \dfrac{\pi }{12} \right) \right)-1=0\] …….. (2)
We know that the solutions of the general quadratic expression \[a{{x}^{2}}+bx+c=0\] are given by \[\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}\]
On comparing the above expression with equation (2) we get,
The values of a = 1, b = \[2\sqrt{3}\], c = -1
Thus, the possible values of \[\tan \left( \dfrac{\pi }{12} \right)\] are equal to \[\dfrac{-2\sqrt{3}\pm \sqrt{{{\left( 2\sqrt{3} \right)}^{2}}-4(1)(-1)}}{2(1)}\]
We know that \[{{\left( ab \right)}^{m}}={{a}^{m}}\times {{b}^{m}}\]
\[=\dfrac{-2\sqrt{3}\pm \sqrt{\left( {{2}^{2}}\times 3 \right)+4}}{2}\]
\[=\dfrac{-2\sqrt{3}\pm \sqrt{12+4}}{2}\]
\[=\dfrac{-2\sqrt{3}\pm \sqrt{16}}{2}\]
\[=\dfrac{-2\sqrt{3}\pm 4}{2}\]
Since we know that the value of \[\sqrt{16}=\sqrt{4\times 4}=\sqrt{{{4}^{2}}}=4\].
\[\Rightarrow \tan \left( \dfrac{\pi }{12} \right)=\dfrac{2\left( -\sqrt{3}\pm 2 \right)}{2}\]
\[\tan \left( \dfrac{\pi }{12} \right)=-\sqrt{3}\pm 2\]
We know that \[\tan \alpha \] is positive in the interval \[0<\alpha <\dfrac{\pi }{2}\] . Thus, we get
\[\tan \left( \dfrac{\pi }{12} \right)=2-\sqrt{3}\]
\[\therefore \] The value of \[\tan \left( \dfrac{\pi }{12} \right)\] is equal to \[2-\sqrt{3}\]
Note: The possibility of mistake can be the calculation since the procedure of solving requires square root terms. The other possibility of mistake is not being able to choose the correct answer out of the obtained two values. The alternative way of solving can be, to calculate the value of \[\cos \left( \dfrac{\pi }{12} \right),\sin \left( \dfrac{\pi }{12} \right)\] since we know the value of \[\cos \left( \dfrac{\pi }{6} \right)\] is equal to \[\dfrac{\sqrt{3}}{2}\] . By substituting the values in the formula \[\cos 2\alpha =2{{\cos }^{2}}\alpha -1=1-2{{\sin }^{2}}\alpha \] , we can calculate the value of \[\cos \left( \dfrac{\pi }{12} \right),\sin \left( \dfrac{\pi }{12} \right)\]. Using the formula \[\tan \alpha =\dfrac{\sin \alpha }{\cos \alpha }\] we can calculate the value of \[\tan \left( \dfrac{\pi }{12} \right)\]. This method eases the procedure of solving.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

