# What is equal to \[\tan \left( \dfrac{\pi }{12} \right)\]?

A. \[2-\sqrt{3}\]

B. \[2+\sqrt{3}\]

C. \[\sqrt{2}-\sqrt{3}\]

D. \[\sqrt{3}-\sqrt{2}\]

Answer

Verified

327k+ views

Hint: To solve the question, we have to apply trigonometric identities and the values of trigonometric functions to arrive at the value of \[\tan \left( \dfrac{\pi }{12} \right)\].

Complete step-by-step answer:

We know that the formula for \[\tan 2\alpha \] is given by \[\dfrac{2\tan \alpha }{1-{{\tan }^{2}}\alpha }\]

By substituting \[\alpha =\dfrac{\pi }{12}\] in the above formula we get

\[\tan \left( \dfrac{2\pi }{12} \right)=\dfrac{2\tan \left( \dfrac{\pi }{12} \right)}{1-{{\left( \tan \left( \dfrac{\pi }{12} \right) \right)}^{2}}}\]

\[\tan \left( \dfrac{\pi }{6} \right)=\dfrac{2\tan \left( \dfrac{\pi }{12} \right)}{1-{{\left( \tan \left( \dfrac{\pi }{12} \right) \right)}^{2}}}\] …….. (1)

We know that the value of \[\tan \left( \dfrac{\pi }{6} \right)\] is equal to \[\dfrac{1}{\sqrt{3}}\]

By substituting the above mentioned value in equation (1) we get,

\[\dfrac{1}{\sqrt{3}}=\dfrac{2\tan \left( \dfrac{\pi }{12} \right)}{1-{{\left( \tan \left( \dfrac{\pi }{12} \right) \right)}^{2}}}\]

Cross multiply the above expression to obtain a quadratic expression of \[\tan \left( \dfrac{\pi }{12} \right)\].

\[1-{{\left( \tan \left( \dfrac{\pi }{12} \right) \right)}^{2}}=\sqrt{3}\left( 2\tan \left( \dfrac{\pi }{12} \right) \right)\]

\[{{\left( \tan \left( \dfrac{\pi }{12} \right) \right)}^{2}}+2\sqrt{3}\left( \tan \left( \dfrac{\pi }{12} \right) \right)-1=0\] …….. (2)

We know that the solutions of the general quadratic expression \[a{{x}^{2}}+bx+c=0\] are given by \[\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}\]

On comparing the above expression with equation (2) we get,

The values of a = 1, b = \[2\sqrt{3}\], c = -1

Thus, the possible values of \[\tan \left( \dfrac{\pi }{12} \right)\] are equal to \[\dfrac{-2\sqrt{3}\pm \sqrt{{{\left( 2\sqrt{3} \right)}^{2}}-4(1)(-1)}}{2(1)}\]

We know that \[{{\left( ab \right)}^{m}}={{a}^{m}}\times {{b}^{m}}\]

\[=\dfrac{-2\sqrt{3}\pm \sqrt{\left( {{2}^{2}}\times 3 \right)+4}}{2}\]

\[=\dfrac{-2\sqrt{3}\pm \sqrt{12+4}}{2}\]

\[=\dfrac{-2\sqrt{3}\pm \sqrt{16}}{2}\]

\[=\dfrac{-2\sqrt{3}\pm 4}{2}\]

Since we know that the value of \[\sqrt{16}=\sqrt{4\times 4}=\sqrt{{{4}^{2}}}=4\].

\[\Rightarrow \tan \left( \dfrac{\pi }{12} \right)=\dfrac{2\left( -\sqrt{3}\pm 2 \right)}{2}\]

\[\tan \left( \dfrac{\pi }{12} \right)=-\sqrt{3}\pm 2\]

We know that \[\tan \alpha \] is positive in the interval \[0<\alpha <\dfrac{\pi }{2}\] . Thus, we get

\[\tan \left( \dfrac{\pi }{12} \right)=2-\sqrt{3}\]

\[\therefore \] The value of \[\tan \left( \dfrac{\pi }{12} \right)\] is equal to \[2-\sqrt{3}\]

Note: The possibility of mistake can be the calculation since the procedure of solving requires square root terms. The other possibility of mistake is not being able to choose the correct answer out of the obtained two values. The alternative way of solving can be, to calculate the value of \[\cos \left( \dfrac{\pi }{12} \right),\sin \left( \dfrac{\pi }{12} \right)\] since we know the value of \[\cos \left( \dfrac{\pi }{6} \right)\] is equal to \[\dfrac{\sqrt{3}}{2}\] . By substituting the values in the formula \[\cos 2\alpha =2{{\cos }^{2}}\alpha -1=1-2{{\sin }^{2}}\alpha \] , we can calculate the value of \[\cos \left( \dfrac{\pi }{12} \right),\sin \left( \dfrac{\pi }{12} \right)\]. Using the formula \[\tan \alpha =\dfrac{\sin \alpha }{\cos \alpha }\] we can calculate the value of \[\tan \left( \dfrac{\pi }{12} \right)\]. This method eases the procedure of solving.

Complete step-by-step answer:

We know that the formula for \[\tan 2\alpha \] is given by \[\dfrac{2\tan \alpha }{1-{{\tan }^{2}}\alpha }\]

By substituting \[\alpha =\dfrac{\pi }{12}\] in the above formula we get

\[\tan \left( \dfrac{2\pi }{12} \right)=\dfrac{2\tan \left( \dfrac{\pi }{12} \right)}{1-{{\left( \tan \left( \dfrac{\pi }{12} \right) \right)}^{2}}}\]

\[\tan \left( \dfrac{\pi }{6} \right)=\dfrac{2\tan \left( \dfrac{\pi }{12} \right)}{1-{{\left( \tan \left( \dfrac{\pi }{12} \right) \right)}^{2}}}\] …….. (1)

We know that the value of \[\tan \left( \dfrac{\pi }{6} \right)\] is equal to \[\dfrac{1}{\sqrt{3}}\]

By substituting the above mentioned value in equation (1) we get,

\[\dfrac{1}{\sqrt{3}}=\dfrac{2\tan \left( \dfrac{\pi }{12} \right)}{1-{{\left( \tan \left( \dfrac{\pi }{12} \right) \right)}^{2}}}\]

Cross multiply the above expression to obtain a quadratic expression of \[\tan \left( \dfrac{\pi }{12} \right)\].

\[1-{{\left( \tan \left( \dfrac{\pi }{12} \right) \right)}^{2}}=\sqrt{3}\left( 2\tan \left( \dfrac{\pi }{12} \right) \right)\]

\[{{\left( \tan \left( \dfrac{\pi }{12} \right) \right)}^{2}}+2\sqrt{3}\left( \tan \left( \dfrac{\pi }{12} \right) \right)-1=0\] …….. (2)

We know that the solutions of the general quadratic expression \[a{{x}^{2}}+bx+c=0\] are given by \[\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}\]

On comparing the above expression with equation (2) we get,

The values of a = 1, b = \[2\sqrt{3}\], c = -1

Thus, the possible values of \[\tan \left( \dfrac{\pi }{12} \right)\] are equal to \[\dfrac{-2\sqrt{3}\pm \sqrt{{{\left( 2\sqrt{3} \right)}^{2}}-4(1)(-1)}}{2(1)}\]

We know that \[{{\left( ab \right)}^{m}}={{a}^{m}}\times {{b}^{m}}\]

\[=\dfrac{-2\sqrt{3}\pm \sqrt{\left( {{2}^{2}}\times 3 \right)+4}}{2}\]

\[=\dfrac{-2\sqrt{3}\pm \sqrt{12+4}}{2}\]

\[=\dfrac{-2\sqrt{3}\pm \sqrt{16}}{2}\]

\[=\dfrac{-2\sqrt{3}\pm 4}{2}\]

Since we know that the value of \[\sqrt{16}=\sqrt{4\times 4}=\sqrt{{{4}^{2}}}=4\].

\[\Rightarrow \tan \left( \dfrac{\pi }{12} \right)=\dfrac{2\left( -\sqrt{3}\pm 2 \right)}{2}\]

\[\tan \left( \dfrac{\pi }{12} \right)=-\sqrt{3}\pm 2\]

We know that \[\tan \alpha \] is positive in the interval \[0<\alpha <\dfrac{\pi }{2}\] . Thus, we get

\[\tan \left( \dfrac{\pi }{12} \right)=2-\sqrt{3}\]

\[\therefore \] The value of \[\tan \left( \dfrac{\pi }{12} \right)\] is equal to \[2-\sqrt{3}\]

Note: The possibility of mistake can be the calculation since the procedure of solving requires square root terms. The other possibility of mistake is not being able to choose the correct answer out of the obtained two values. The alternative way of solving can be, to calculate the value of \[\cos \left( \dfrac{\pi }{12} \right),\sin \left( \dfrac{\pi }{12} \right)\] since we know the value of \[\cos \left( \dfrac{\pi }{6} \right)\] is equal to \[\dfrac{\sqrt{3}}{2}\] . By substituting the values in the formula \[\cos 2\alpha =2{{\cos }^{2}}\alpha -1=1-2{{\sin }^{2}}\alpha \] , we can calculate the value of \[\cos \left( \dfrac{\pi }{12} \right),\sin \left( \dfrac{\pi }{12} \right)\]. Using the formula \[\tan \alpha =\dfrac{\sin \alpha }{\cos \alpha }\] we can calculate the value of \[\tan \left( \dfrac{\pi }{12} \right)\]. This method eases the procedure of solving.

Last updated date: 03rd Jun 2023

•

Total views: 327k

•

Views today: 8.83k

Recently Updated Pages

Calculate the entropy change involved in the conversion class 11 chemistry JEE_Main

The law formulated by Dr Nernst is A First law of thermodynamics class 11 chemistry JEE_Main

For the reaction at rm0rm0rmC and normal pressure A class 11 chemistry JEE_Main

An engine operating between rm15rm0rm0rmCand rm2rm5rm0rmC class 11 chemistry JEE_Main

For the reaction rm2Clg to rmCrmlrm2rmg the signs of class 11 chemistry JEE_Main

The enthalpy change for the transition of liquid water class 11 chemistry JEE_Main

Trending doubts

Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

Write a letter to the Principal of your school to plead class 10 english CBSE