Answer

Verified

408k+ views

Hint: To solve the question, we have to apply trigonometric identities and the values of trigonometric functions to arrive at the value of \[\tan \left( \dfrac{\pi }{12} \right)\].

Complete step-by-step answer:

We know that the formula for \[\tan 2\alpha \] is given by \[\dfrac{2\tan \alpha }{1-{{\tan }^{2}}\alpha }\]

By substituting \[\alpha =\dfrac{\pi }{12}\] in the above formula we get

\[\tan \left( \dfrac{2\pi }{12} \right)=\dfrac{2\tan \left( \dfrac{\pi }{12} \right)}{1-{{\left( \tan \left( \dfrac{\pi }{12} \right) \right)}^{2}}}\]

\[\tan \left( \dfrac{\pi }{6} \right)=\dfrac{2\tan \left( \dfrac{\pi }{12} \right)}{1-{{\left( \tan \left( \dfrac{\pi }{12} \right) \right)}^{2}}}\] …….. (1)

We know that the value of \[\tan \left( \dfrac{\pi }{6} \right)\] is equal to \[\dfrac{1}{\sqrt{3}}\]

By substituting the above mentioned value in equation (1) we get,

\[\dfrac{1}{\sqrt{3}}=\dfrac{2\tan \left( \dfrac{\pi }{12} \right)}{1-{{\left( \tan \left( \dfrac{\pi }{12} \right) \right)}^{2}}}\]

Cross multiply the above expression to obtain a quadratic expression of \[\tan \left( \dfrac{\pi }{12} \right)\].

\[1-{{\left( \tan \left( \dfrac{\pi }{12} \right) \right)}^{2}}=\sqrt{3}\left( 2\tan \left( \dfrac{\pi }{12} \right) \right)\]

\[{{\left( \tan \left( \dfrac{\pi }{12} \right) \right)}^{2}}+2\sqrt{3}\left( \tan \left( \dfrac{\pi }{12} \right) \right)-1=0\] …….. (2)

We know that the solutions of the general quadratic expression \[a{{x}^{2}}+bx+c=0\] are given by \[\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}\]

On comparing the above expression with equation (2) we get,

The values of a = 1, b = \[2\sqrt{3}\], c = -1

Thus, the possible values of \[\tan \left( \dfrac{\pi }{12} \right)\] are equal to \[\dfrac{-2\sqrt{3}\pm \sqrt{{{\left( 2\sqrt{3} \right)}^{2}}-4(1)(-1)}}{2(1)}\]

We know that \[{{\left( ab \right)}^{m}}={{a}^{m}}\times {{b}^{m}}\]

\[=\dfrac{-2\sqrt{3}\pm \sqrt{\left( {{2}^{2}}\times 3 \right)+4}}{2}\]

\[=\dfrac{-2\sqrt{3}\pm \sqrt{12+4}}{2}\]

\[=\dfrac{-2\sqrt{3}\pm \sqrt{16}}{2}\]

\[=\dfrac{-2\sqrt{3}\pm 4}{2}\]

Since we know that the value of \[\sqrt{16}=\sqrt{4\times 4}=\sqrt{{{4}^{2}}}=4\].

\[\Rightarrow \tan \left( \dfrac{\pi }{12} \right)=\dfrac{2\left( -\sqrt{3}\pm 2 \right)}{2}\]

\[\tan \left( \dfrac{\pi }{12} \right)=-\sqrt{3}\pm 2\]

We know that \[\tan \alpha \] is positive in the interval \[0<\alpha <\dfrac{\pi }{2}\] . Thus, we get

\[\tan \left( \dfrac{\pi }{12} \right)=2-\sqrt{3}\]

\[\therefore \] The value of \[\tan \left( \dfrac{\pi }{12} \right)\] is equal to \[2-\sqrt{3}\]

Note: The possibility of mistake can be the calculation since the procedure of solving requires square root terms. The other possibility of mistake is not being able to choose the correct answer out of the obtained two values. The alternative way of solving can be, to calculate the value of \[\cos \left( \dfrac{\pi }{12} \right),\sin \left( \dfrac{\pi }{12} \right)\] since we know the value of \[\cos \left( \dfrac{\pi }{6} \right)\] is equal to \[\dfrac{\sqrt{3}}{2}\] . By substituting the values in the formula \[\cos 2\alpha =2{{\cos }^{2}}\alpha -1=1-2{{\sin }^{2}}\alpha \] , we can calculate the value of \[\cos \left( \dfrac{\pi }{12} \right),\sin \left( \dfrac{\pi }{12} \right)\]. Using the formula \[\tan \alpha =\dfrac{\sin \alpha }{\cos \alpha }\] we can calculate the value of \[\tan \left( \dfrac{\pi }{12} \right)\]. This method eases the procedure of solving.

Complete step-by-step answer:

We know that the formula for \[\tan 2\alpha \] is given by \[\dfrac{2\tan \alpha }{1-{{\tan }^{2}}\alpha }\]

By substituting \[\alpha =\dfrac{\pi }{12}\] in the above formula we get

\[\tan \left( \dfrac{2\pi }{12} \right)=\dfrac{2\tan \left( \dfrac{\pi }{12} \right)}{1-{{\left( \tan \left( \dfrac{\pi }{12} \right) \right)}^{2}}}\]

\[\tan \left( \dfrac{\pi }{6} \right)=\dfrac{2\tan \left( \dfrac{\pi }{12} \right)}{1-{{\left( \tan \left( \dfrac{\pi }{12} \right) \right)}^{2}}}\] …….. (1)

We know that the value of \[\tan \left( \dfrac{\pi }{6} \right)\] is equal to \[\dfrac{1}{\sqrt{3}}\]

By substituting the above mentioned value in equation (1) we get,

\[\dfrac{1}{\sqrt{3}}=\dfrac{2\tan \left( \dfrac{\pi }{12} \right)}{1-{{\left( \tan \left( \dfrac{\pi }{12} \right) \right)}^{2}}}\]

Cross multiply the above expression to obtain a quadratic expression of \[\tan \left( \dfrac{\pi }{12} \right)\].

\[1-{{\left( \tan \left( \dfrac{\pi }{12} \right) \right)}^{2}}=\sqrt{3}\left( 2\tan \left( \dfrac{\pi }{12} \right) \right)\]

\[{{\left( \tan \left( \dfrac{\pi }{12} \right) \right)}^{2}}+2\sqrt{3}\left( \tan \left( \dfrac{\pi }{12} \right) \right)-1=0\] …….. (2)

We know that the solutions of the general quadratic expression \[a{{x}^{2}}+bx+c=0\] are given by \[\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}\]

On comparing the above expression with equation (2) we get,

The values of a = 1, b = \[2\sqrt{3}\], c = -1

Thus, the possible values of \[\tan \left( \dfrac{\pi }{12} \right)\] are equal to \[\dfrac{-2\sqrt{3}\pm \sqrt{{{\left( 2\sqrt{3} \right)}^{2}}-4(1)(-1)}}{2(1)}\]

We know that \[{{\left( ab \right)}^{m}}={{a}^{m}}\times {{b}^{m}}\]

\[=\dfrac{-2\sqrt{3}\pm \sqrt{\left( {{2}^{2}}\times 3 \right)+4}}{2}\]

\[=\dfrac{-2\sqrt{3}\pm \sqrt{12+4}}{2}\]

\[=\dfrac{-2\sqrt{3}\pm \sqrt{16}}{2}\]

\[=\dfrac{-2\sqrt{3}\pm 4}{2}\]

Since we know that the value of \[\sqrt{16}=\sqrt{4\times 4}=\sqrt{{{4}^{2}}}=4\].

\[\Rightarrow \tan \left( \dfrac{\pi }{12} \right)=\dfrac{2\left( -\sqrt{3}\pm 2 \right)}{2}\]

\[\tan \left( \dfrac{\pi }{12} \right)=-\sqrt{3}\pm 2\]

We know that \[\tan \alpha \] is positive in the interval \[0<\alpha <\dfrac{\pi }{2}\] . Thus, we get

\[\tan \left( \dfrac{\pi }{12} \right)=2-\sqrt{3}\]

\[\therefore \] The value of \[\tan \left( \dfrac{\pi }{12} \right)\] is equal to \[2-\sqrt{3}\]

Note: The possibility of mistake can be the calculation since the procedure of solving requires square root terms. The other possibility of mistake is not being able to choose the correct answer out of the obtained two values. The alternative way of solving can be, to calculate the value of \[\cos \left( \dfrac{\pi }{12} \right),\sin \left( \dfrac{\pi }{12} \right)\] since we know the value of \[\cos \left( \dfrac{\pi }{6} \right)\] is equal to \[\dfrac{\sqrt{3}}{2}\] . By substituting the values in the formula \[\cos 2\alpha =2{{\cos }^{2}}\alpha -1=1-2{{\sin }^{2}}\alpha \] , we can calculate the value of \[\cos \left( \dfrac{\pi }{12} \right),\sin \left( \dfrac{\pi }{12} \right)\]. Using the formula \[\tan \alpha =\dfrac{\sin \alpha }{\cos \alpha }\] we can calculate the value of \[\tan \left( \dfrac{\pi }{12} \right)\]. This method eases the procedure of solving.

Recently Updated Pages

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

How do you arrange NH4 + BF3 H2O C2H2 in increasing class 11 chemistry CBSE

Is H mCT and q mCT the same thing If so which is more class 11 chemistry CBSE

What are the possible quantum number for the last outermost class 11 chemistry CBSE

Is C2 paramagnetic or diamagnetic class 11 chemistry CBSE

What happens when entropy reaches maximum class 11 chemistry JEE_Main

Trending doubts

How do you solve x2 11x + 28 0 using the quadratic class 10 maths CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Give 10 examples of unisexual and bisexual flowers

What is the color of ferrous sulphate crystals? How does this color change after heating? Name the products formed on strongly heating ferrous sulphate crystals. What type of chemical reaction occurs in this type of change.

Draw a diagram of nephron and explain its structur class 11 biology CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

State the laws of reflection of light

Difference Between Plant Cell and Animal Cell

Change the following sentences into negative and interrogative class 10 english CBSE