
Eliminate \[\theta \],
\[\begin{align}
& x=2\sec \theta +3\tan \theta \\
& y=3\sec \theta -2\tan \theta \\
\end{align}\]
Answer
571.8k+ views
Hint: Square the two equations and add the resultant equation to eliminate the \[\theta \].
Formulas used:
The standard value of \[{{\sec }^{2}}\theta +{{\tan }^{2}}\theta =1\]
Complete step-by-step answer:
First step will be squaring both the equation,
The next step is to add the following equation and the solution can be obtained.
The \[\theta \] can be eliminating as,
\[\begin{align}
& x=2\sec \theta +3\tan \theta \text{ }\left( 1 \right) \\
& y=3\sec \theta -2\tan \theta \text{ }\left( 2 \right) \\
& \text{Solving equation }\left( 1 \right)\text{ and }\left( 2 \right), \\
& \text{Squaring both side of equation }\left( 1 \right), \\
& {{x}^{2}}={{\left( 2\sec \theta +3\tan \theta \right)}^{2}} \\
& {{x}^{2}}\text{=4}{{\sec }^{2}}\theta +9{{\tan }^{2}}\theta +12\sec \theta \tan \theta \text{ }\left( 3 \right) \\
& \text{Squaring both side of equation }\left( 2 \right), \\
& {{y}^{2}}={{\left( 3\sec \theta -2\tan \theta \right)}^{2}} \\
& {{y}^{2}}\text{=4}{{\sec }^{2}}\theta +9{{\tan }^{2}}\theta -12\sec \theta \tan \theta \text{ }\left( 4 \right) \\
& \text{Adding equation }\left( 3 \right)\text{ and }\left( 4 \right), \\
& {{x}^{2}}\text{+}{{y}^{2}}\text{=}\left( \text{4}{{\sec }^{2}}\theta +9{{\tan }^{2}}\theta +12\sec \theta \tan \theta \right)+\left( \text{4}{{\sec }^{2}}\theta +9{{\tan }^{2}}\theta -12\sec \theta \tan \theta \right) \\
& {{x}^{2}}\text{+}{{y}^{2}}=\text{4}{{\sec }^{2}}\theta +9{{\tan }^{2}}\theta +12\sec \theta \tan \theta +\text{4}{{\sec }^{2}}\theta +9{{\tan }^{2}}\theta -12\sec \theta \tan \theta \\
& {{x}^{2}}\text{+}{{y}^{2}}=\text{4}\left( {{\sec }^{2}}\theta +{{\tan }^{2}}\theta \right)+9\left( {{\sec }^{2}}\theta +{{\tan }^{2}}\theta \right) \\
& {{x}^{2}}\text{+}{{y}^{2}}=4\cdot 1+9\cdot 1 \\
& {{x}^{2}}\text{+}{{y}^{2}}=13 \\
\end{align}\]
Thus, the required solution is \[{{x}^{2}}\text{+}{{y}^{2}}=13\].
Note: In the elimination method we have to either add or subtract the given equations to get an equation in one variable, when the coefficients of one variable are opposites, we have to square the equation and add it to another equation to eliminate the variable.
Formulas used:
The standard value of \[{{\sec }^{2}}\theta +{{\tan }^{2}}\theta =1\]
Complete step-by-step answer:
First step will be squaring both the equation,
The next step is to add the following equation and the solution can be obtained.
The \[\theta \] can be eliminating as,
\[\begin{align}
& x=2\sec \theta +3\tan \theta \text{ }\left( 1 \right) \\
& y=3\sec \theta -2\tan \theta \text{ }\left( 2 \right) \\
& \text{Solving equation }\left( 1 \right)\text{ and }\left( 2 \right), \\
& \text{Squaring both side of equation }\left( 1 \right), \\
& {{x}^{2}}={{\left( 2\sec \theta +3\tan \theta \right)}^{2}} \\
& {{x}^{2}}\text{=4}{{\sec }^{2}}\theta +9{{\tan }^{2}}\theta +12\sec \theta \tan \theta \text{ }\left( 3 \right) \\
& \text{Squaring both side of equation }\left( 2 \right), \\
& {{y}^{2}}={{\left( 3\sec \theta -2\tan \theta \right)}^{2}} \\
& {{y}^{2}}\text{=4}{{\sec }^{2}}\theta +9{{\tan }^{2}}\theta -12\sec \theta \tan \theta \text{ }\left( 4 \right) \\
& \text{Adding equation }\left( 3 \right)\text{ and }\left( 4 \right), \\
& {{x}^{2}}\text{+}{{y}^{2}}\text{=}\left( \text{4}{{\sec }^{2}}\theta +9{{\tan }^{2}}\theta +12\sec \theta \tan \theta \right)+\left( \text{4}{{\sec }^{2}}\theta +9{{\tan }^{2}}\theta -12\sec \theta \tan \theta \right) \\
& {{x}^{2}}\text{+}{{y}^{2}}=\text{4}{{\sec }^{2}}\theta +9{{\tan }^{2}}\theta +12\sec \theta \tan \theta +\text{4}{{\sec }^{2}}\theta +9{{\tan }^{2}}\theta -12\sec \theta \tan \theta \\
& {{x}^{2}}\text{+}{{y}^{2}}=\text{4}\left( {{\sec }^{2}}\theta +{{\tan }^{2}}\theta \right)+9\left( {{\sec }^{2}}\theta +{{\tan }^{2}}\theta \right) \\
& {{x}^{2}}\text{+}{{y}^{2}}=4\cdot 1+9\cdot 1 \\
& {{x}^{2}}\text{+}{{y}^{2}}=13 \\
\end{align}\]
Thus, the required solution is \[{{x}^{2}}\text{+}{{y}^{2}}=13\].
Note: In the elimination method we have to either add or subtract the given equations to get an equation in one variable, when the coefficients of one variable are opposites, we have to square the equation and add it to another equation to eliminate the variable.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

