
Eliminate \[\theta \],
\[\begin{align}
& x=2\sec \theta +3\tan \theta \\
& y=3\sec \theta -2\tan \theta \\
\end{align}\]
Answer
585.9k+ views
Hint: Square the two equations and add the resultant equation to eliminate the \[\theta \].
Formulas used:
The standard value of \[{{\sec }^{2}}\theta +{{\tan }^{2}}\theta =1\]
Complete step-by-step answer:
First step will be squaring both the equation,
The next step is to add the following equation and the solution can be obtained.
The \[\theta \] can be eliminating as,
\[\begin{align}
& x=2\sec \theta +3\tan \theta \text{ }\left( 1 \right) \\
& y=3\sec \theta -2\tan \theta \text{ }\left( 2 \right) \\
& \text{Solving equation }\left( 1 \right)\text{ and }\left( 2 \right), \\
& \text{Squaring both side of equation }\left( 1 \right), \\
& {{x}^{2}}={{\left( 2\sec \theta +3\tan \theta \right)}^{2}} \\
& {{x}^{2}}\text{=4}{{\sec }^{2}}\theta +9{{\tan }^{2}}\theta +12\sec \theta \tan \theta \text{ }\left( 3 \right) \\
& \text{Squaring both side of equation }\left( 2 \right), \\
& {{y}^{2}}={{\left( 3\sec \theta -2\tan \theta \right)}^{2}} \\
& {{y}^{2}}\text{=4}{{\sec }^{2}}\theta +9{{\tan }^{2}}\theta -12\sec \theta \tan \theta \text{ }\left( 4 \right) \\
& \text{Adding equation }\left( 3 \right)\text{ and }\left( 4 \right), \\
& {{x}^{2}}\text{+}{{y}^{2}}\text{=}\left( \text{4}{{\sec }^{2}}\theta +9{{\tan }^{2}}\theta +12\sec \theta \tan \theta \right)+\left( \text{4}{{\sec }^{2}}\theta +9{{\tan }^{2}}\theta -12\sec \theta \tan \theta \right) \\
& {{x}^{2}}\text{+}{{y}^{2}}=\text{4}{{\sec }^{2}}\theta +9{{\tan }^{2}}\theta +12\sec \theta \tan \theta +\text{4}{{\sec }^{2}}\theta +9{{\tan }^{2}}\theta -12\sec \theta \tan \theta \\
& {{x}^{2}}\text{+}{{y}^{2}}=\text{4}\left( {{\sec }^{2}}\theta +{{\tan }^{2}}\theta \right)+9\left( {{\sec }^{2}}\theta +{{\tan }^{2}}\theta \right) \\
& {{x}^{2}}\text{+}{{y}^{2}}=4\cdot 1+9\cdot 1 \\
& {{x}^{2}}\text{+}{{y}^{2}}=13 \\
\end{align}\]
Thus, the required solution is \[{{x}^{2}}\text{+}{{y}^{2}}=13\].
Note: In the elimination method we have to either add or subtract the given equations to get an equation in one variable, when the coefficients of one variable are opposites, we have to square the equation and add it to another equation to eliminate the variable.
Formulas used:
The standard value of \[{{\sec }^{2}}\theta +{{\tan }^{2}}\theta =1\]
Complete step-by-step answer:
First step will be squaring both the equation,
The next step is to add the following equation and the solution can be obtained.
The \[\theta \] can be eliminating as,
\[\begin{align}
& x=2\sec \theta +3\tan \theta \text{ }\left( 1 \right) \\
& y=3\sec \theta -2\tan \theta \text{ }\left( 2 \right) \\
& \text{Solving equation }\left( 1 \right)\text{ and }\left( 2 \right), \\
& \text{Squaring both side of equation }\left( 1 \right), \\
& {{x}^{2}}={{\left( 2\sec \theta +3\tan \theta \right)}^{2}} \\
& {{x}^{2}}\text{=4}{{\sec }^{2}}\theta +9{{\tan }^{2}}\theta +12\sec \theta \tan \theta \text{ }\left( 3 \right) \\
& \text{Squaring both side of equation }\left( 2 \right), \\
& {{y}^{2}}={{\left( 3\sec \theta -2\tan \theta \right)}^{2}} \\
& {{y}^{2}}\text{=4}{{\sec }^{2}}\theta +9{{\tan }^{2}}\theta -12\sec \theta \tan \theta \text{ }\left( 4 \right) \\
& \text{Adding equation }\left( 3 \right)\text{ and }\left( 4 \right), \\
& {{x}^{2}}\text{+}{{y}^{2}}\text{=}\left( \text{4}{{\sec }^{2}}\theta +9{{\tan }^{2}}\theta +12\sec \theta \tan \theta \right)+\left( \text{4}{{\sec }^{2}}\theta +9{{\tan }^{2}}\theta -12\sec \theta \tan \theta \right) \\
& {{x}^{2}}\text{+}{{y}^{2}}=\text{4}{{\sec }^{2}}\theta +9{{\tan }^{2}}\theta +12\sec \theta \tan \theta +\text{4}{{\sec }^{2}}\theta +9{{\tan }^{2}}\theta -12\sec \theta \tan \theta \\
& {{x}^{2}}\text{+}{{y}^{2}}=\text{4}\left( {{\sec }^{2}}\theta +{{\tan }^{2}}\theta \right)+9\left( {{\sec }^{2}}\theta +{{\tan }^{2}}\theta \right) \\
& {{x}^{2}}\text{+}{{y}^{2}}=4\cdot 1+9\cdot 1 \\
& {{x}^{2}}\text{+}{{y}^{2}}=13 \\
\end{align}\]
Thus, the required solution is \[{{x}^{2}}\text{+}{{y}^{2}}=13\].
Note: In the elimination method we have to either add or subtract the given equations to get an equation in one variable, when the coefficients of one variable are opposites, we have to square the equation and add it to another equation to eliminate the variable.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

