
When an electron makes a transition from (${\rm{n}}\,{\rm{ + }}\,{\rm{1}}$) state to n state, the frequency of emitted radiations is related to n according to (${\rm{n}}\, > > \,{\rm{1}}$)
A. ${\rm{ \nu }}\, \propto {{\rm{n}}^{ - 3}}$
B. ${\rm{ \nu }}\, \propto {{\rm{n}}^2}$
C. ${\rm{ \nu }}\, \propto {{\rm{n}}^3}$
D. ${\rm{ \nu }}\, \propto {{\rm{n}}^{2/3}}$
Answer
555.3k+ views
Hint: We will use the Rydberg formula of wavelength. Substitute the value of energy level and apply the given condition, we can determine the relationship between frequency and principal quantum number.
Formula used: \[\dfrac{{\rm{1}}}{{\rm{\lambda }}} = \,{{\rm{R}}_{\rm{H}}}{{\rm{Z}}^2}\left[ {\dfrac{{\rm{1}}}{{{\rm{n}}_{{\rm{Lower}}}^{\rm{2}}}} - \dfrac{{\rm{1}}}{{{\rm{n}}_{{\rm{higher}}}^2}}} \right]\]
Complete answer:
The formula to determine the wavelength of transitions in emission spectrum is as follows:
\[\dfrac{{\rm{1}}}{{\rm{\lambda }}} = \,{{\rm{R}}_{\rm{H}}}{{\rm{Z}}^2}\left[ {\dfrac{{\rm{1}}}{{{\rm{n}}_{{\rm{Lower}}}^{\rm{2}}}} - \dfrac{{\rm{1}}}{{{\rm{n}}_{{\rm{higher}}}^2}}} \right]\]
Where,
\[{\rm{\lambda }}\] is the wavelength.
Z is the atomic number.
\[{{\rm{R}}_{\rm{H}}}\] is the Rydberg constant.
The value of the Rydberg constant is $109678\,{\rm{c}}{{\rm{m}}^{ - 1}}$ .
\[{{\rm{n}}_{{\rm{lower}}}}\] is the principal quantum of the energy level in which the electron comes.
\[{{\rm{n}}_{{\rm{higher}}}}\] is the principal quantum of the energy level from which the electron comes.
The relation between frequency and wavelength is as follows:
$\nu {\rm{ = }}\dfrac{{\rm{c}}}{{\rm{\lambda }}}$
Rearrange for wavelength as follows:
$\Rightarrow \dfrac{\nu }{{\rm{c}}}{\rm{ = }}\dfrac{1}{{\rm{\lambda }}}$
\[\Rightarrow\dfrac{\nu }{{\rm{c}}} = \,{{\rm{R}}_{\rm{H}}}{Z^2}\left[ {\dfrac{{\rm{1}}}{{{\rm{n}}_{{\rm{Lower}}}^{\rm{2}}}} - \dfrac{{\rm{1}}}{{{\rm{n}}_{{\rm{higher}}}^2}}} \right]\]
For the transition \[{\rm{n + 1}}\, \to {\rm{n}}\],
Substitute ${\rm{n}} $ for \[{{\rm{n}}_{{\rm{lower}}}}\] and ${\rm{n}}\,{\rm{ + }}\,{\rm{1}}$ for \[{{\rm{n}}_{{\rm{higher}}}}\].
\[\Rightarrow \nu = \,{{\rm{R}}_{\rm{H}}}{\rm{c}}\,{Z^2}\left[ {\dfrac{{\rm{1}}}{{{{\rm{n}}^2}}} - \dfrac{{\rm{1}}}{{{{\left( {{\rm{n}}\,{\rm{ + }}\,{\rm{1}}} \right)}^2}}}} \right]\]
\[\Rightarrow \nu = \,{{\rm{R}}_{\rm{H}}}{\rm{c}}\,{Z^2}\left[ {\dfrac{{{{\left( {{\rm{n}}\,{\rm{ + }}\,{\rm{1}}} \right)}^2} - {{\rm{n}}^{\rm{2}}}}}{{{{\rm{n}}^2}{{\left( {{\rm{n}}\,{\rm{ + }}\,{\rm{1}}} \right)}^2}}}} \right]\]
\[\Rightarrow \nu = \,{{\rm{R}}_{\rm{H}}}{\rm{c}}\,{Z^2}\left[ {\dfrac{{\,2{\rm{n}}\,{\rm{ + }}\,{\rm{1}}}}{{{{\rm{n}}^2}{{\left( {{\rm{n}}\,{\rm{ + }}\,{\rm{1}}} \right)}^2}}}} \right]\]
\[{\rm{If \,n}}\,{\rm{ > > 1}}\]
\[\Rightarrow{\rm{n}}\,{\rm{ + }}\,{\rm{1}}\, \approx \,{\rm{n}}\]
\[\Rightarrow2{\rm{n}}\,{\rm{ + }}\,{\rm{1}} \approx \,2{\rm{n}}\]
\[\Rightarrow\nu = \,{{\rm{R}}_{\rm{H}}}{\rm{c}}\,{Z^2}\left[ {\dfrac{{\,2{\rm{n}}}}{{{{\rm{n}}^2}.\,{{\rm{n}}^2}}}} \right]\]
\[\Rightarrow\nu = \,\dfrac{{\,2{{\rm{R}}_{\rm{H}}}{\rm{c}}\,{Z^2}}}{{{{\rm{n}}^3}}}\]
\[\Rightarrow \nu \, \propto {{\rm{n}}^{ - 3}}\]
So, when an electron makes a transition from (${\rm{n}}\,{\rm{ + }}\,{\rm{1}}$) state to n state, the relation between the frequency of emitted radiations to n is ${\rm{v}}\, \propto {{\rm{ \nu }}^{ - 3}}$.
Therefore, option (A) ${\rm{v}}\, \propto {{\rm{ \nu }}^{ - 3}}$ is correct.
Note:
The Rydberg formula for hydrogen atom is \[\dfrac{{\rm{1}}}{{\rm{\lambda }}} = \,{{\rm{R}}_{\rm{H}}}\left[ {\dfrac{{\rm{1}}}{{{\rm{n}}_{{\rm{Lower}}}^{\rm{2}}}} - \dfrac{{\rm{1}}}{{{\rm{n}}_{{\rm{higher}}}^2}}} \right]\]. When the value of the principal quantum number is greater than one, the frequency is inversely proportional to the principal quantum number. As the principal quantum number increases, the energy of the level decreases so less energy is required for the transition of an electron. Energy and frequency are directly proportional. So, the frequency decreases.
Formula used: \[\dfrac{{\rm{1}}}{{\rm{\lambda }}} = \,{{\rm{R}}_{\rm{H}}}{{\rm{Z}}^2}\left[ {\dfrac{{\rm{1}}}{{{\rm{n}}_{{\rm{Lower}}}^{\rm{2}}}} - \dfrac{{\rm{1}}}{{{\rm{n}}_{{\rm{higher}}}^2}}} \right]\]
Complete answer:
The formula to determine the wavelength of transitions in emission spectrum is as follows:
\[\dfrac{{\rm{1}}}{{\rm{\lambda }}} = \,{{\rm{R}}_{\rm{H}}}{{\rm{Z}}^2}\left[ {\dfrac{{\rm{1}}}{{{\rm{n}}_{{\rm{Lower}}}^{\rm{2}}}} - \dfrac{{\rm{1}}}{{{\rm{n}}_{{\rm{higher}}}^2}}} \right]\]
Where,
\[{\rm{\lambda }}\] is the wavelength.
Z is the atomic number.
\[{{\rm{R}}_{\rm{H}}}\] is the Rydberg constant.
The value of the Rydberg constant is $109678\,{\rm{c}}{{\rm{m}}^{ - 1}}$ .
\[{{\rm{n}}_{{\rm{lower}}}}\] is the principal quantum of the energy level in which the electron comes.
\[{{\rm{n}}_{{\rm{higher}}}}\] is the principal quantum of the energy level from which the electron comes.
The relation between frequency and wavelength is as follows:
$\nu {\rm{ = }}\dfrac{{\rm{c}}}{{\rm{\lambda }}}$
Rearrange for wavelength as follows:
$\Rightarrow \dfrac{\nu }{{\rm{c}}}{\rm{ = }}\dfrac{1}{{\rm{\lambda }}}$
\[\Rightarrow\dfrac{\nu }{{\rm{c}}} = \,{{\rm{R}}_{\rm{H}}}{Z^2}\left[ {\dfrac{{\rm{1}}}{{{\rm{n}}_{{\rm{Lower}}}^{\rm{2}}}} - \dfrac{{\rm{1}}}{{{\rm{n}}_{{\rm{higher}}}^2}}} \right]\]
For the transition \[{\rm{n + 1}}\, \to {\rm{n}}\],
Substitute ${\rm{n}} $ for \[{{\rm{n}}_{{\rm{lower}}}}\] and ${\rm{n}}\,{\rm{ + }}\,{\rm{1}}$ for \[{{\rm{n}}_{{\rm{higher}}}}\].
\[\Rightarrow \nu = \,{{\rm{R}}_{\rm{H}}}{\rm{c}}\,{Z^2}\left[ {\dfrac{{\rm{1}}}{{{{\rm{n}}^2}}} - \dfrac{{\rm{1}}}{{{{\left( {{\rm{n}}\,{\rm{ + }}\,{\rm{1}}} \right)}^2}}}} \right]\]
\[\Rightarrow \nu = \,{{\rm{R}}_{\rm{H}}}{\rm{c}}\,{Z^2}\left[ {\dfrac{{{{\left( {{\rm{n}}\,{\rm{ + }}\,{\rm{1}}} \right)}^2} - {{\rm{n}}^{\rm{2}}}}}{{{{\rm{n}}^2}{{\left( {{\rm{n}}\,{\rm{ + }}\,{\rm{1}}} \right)}^2}}}} \right]\]
\[\Rightarrow \nu = \,{{\rm{R}}_{\rm{H}}}{\rm{c}}\,{Z^2}\left[ {\dfrac{{\,2{\rm{n}}\,{\rm{ + }}\,{\rm{1}}}}{{{{\rm{n}}^2}{{\left( {{\rm{n}}\,{\rm{ + }}\,{\rm{1}}} \right)}^2}}}} \right]\]
\[{\rm{If \,n}}\,{\rm{ > > 1}}\]
\[\Rightarrow{\rm{n}}\,{\rm{ + }}\,{\rm{1}}\, \approx \,{\rm{n}}\]
\[\Rightarrow2{\rm{n}}\,{\rm{ + }}\,{\rm{1}} \approx \,2{\rm{n}}\]
\[\Rightarrow\nu = \,{{\rm{R}}_{\rm{H}}}{\rm{c}}\,{Z^2}\left[ {\dfrac{{\,2{\rm{n}}}}{{{{\rm{n}}^2}.\,{{\rm{n}}^2}}}} \right]\]
\[\Rightarrow\nu = \,\dfrac{{\,2{{\rm{R}}_{\rm{H}}}{\rm{c}}\,{Z^2}}}{{{{\rm{n}}^3}}}\]
\[\Rightarrow \nu \, \propto {{\rm{n}}^{ - 3}}\]
So, when an electron makes a transition from (${\rm{n}}\,{\rm{ + }}\,{\rm{1}}$) state to n state, the relation between the frequency of emitted radiations to n is ${\rm{v}}\, \propto {{\rm{ \nu }}^{ - 3}}$.
Therefore, option (A) ${\rm{v}}\, \propto {{\rm{ \nu }}^{ - 3}}$ is correct.
Note:
The Rydberg formula for hydrogen atom is \[\dfrac{{\rm{1}}}{{\rm{\lambda }}} = \,{{\rm{R}}_{\rm{H}}}\left[ {\dfrac{{\rm{1}}}{{{\rm{n}}_{{\rm{Lower}}}^{\rm{2}}}} - \dfrac{{\rm{1}}}{{{\rm{n}}_{{\rm{higher}}}^2}}} \right]\]. When the value of the principal quantum number is greater than one, the frequency is inversely proportional to the principal quantum number. As the principal quantum number increases, the energy of the level decreases so less energy is required for the transition of an electron. Energy and frequency are directly proportional. So, the frequency decreases.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

What is periodicity class 11 chemistry CBSE

What is a periderm How does periderm formation take class 11 biology CBSE

Mention the basic forces in nature class 11 physics CBSE

What are porins class 11 biology CBSE

