
During Searle’s experiment, zero of Vernier scale lies between $3.20 \times {10^{ - 2}}\;{\text{m}}$ and $3.25 \times {10^{ - 2}}\;{\text{m}}$of the main scale. The 20th division of Vernier scale exactly coincides with one of the main scale divisions. When an additional load of 2 kg is applied to the wire, the zero of the vernier scale still lies between $3.20 \times {10^{ - 2}}\;{\text{m}}$ and $3.25 \times {10^{ - 2}}\;{\text{m}}$of the main scale but now the 45th division of Vernier scale coincides with one of the main scale divisions. The length of the thin metallic wire is 2 m and its cross-sectional area is $8 \times {10^7}\;{{\text{m}}^2}$. The least count of the Vernier scale is $1 \times {10^{ - 5}}\;{\text{m}}$. The maximum percentage error in the Young’s modulus of the wire is:
A. 8%
B. 3%
C. 7%
D. 4%
Answer
565.5k+ views
Hint: The least count is the minimum measurable quantity by any instrument. It is also the same as the ratio of one part of the main scale to the number of parts on the vernier scale.
The percentage error is evaluated by taking the proportion of the mean value of the absolute errors to mean value of the quantity.
Complete step-by-step solution:
Given:
The number of divisions of the vernier scale that coincide with the main scale without any load is, ${n_1} = 20$.
The number of divisions of the vernier scale coinciding with the main scale with any load is, ${n_2} = 45$.
The equation to determine the length of the wire without any load is,
${L_1} = M + {n_1}l$
Here, $M$ is the main scale reading and $l$ is the least count.
The equation to determine the length of the wire with any load is,
${L_2} = M + {n_2}l$
The equation to determine the change in the length of the wire is,
$\Delta L = {L_2} - {L_1}$
Substitute all the values in the above equation.
$\Delta L = \left( {M + {n_2}l} \right) - \left( {M + {n_1}l} \right)$
$ = \left( {{n_2} - {n_1}} \right)l$
$ = \left( {45 - 20} \right)l$
$ = 25l$
The equation to determine the Young’s modulus is,
$Y = \dfrac{{FL}}{{lA}}$
The equation to calculate the maximum percentage error in the Young’s modulus of the wire is,
$\dfrac{{\Delta Y}}{Y} = \left( {\dfrac{l}{{\Delta L}}} \right) \times 100$
Substitute all the values in the above equation.
$\dfrac{{\Delta Y}}{Y} = \left( {\dfrac{l}{{25l}}} \right) \times 100$
$ = 4\% $
Therefore, the maximum percentage error in the Young’s modulus of the wire is 4% and the option (D) is correct.
Note:- Take the reading carefully from the vernier scale because the percentage error depends on the number of divisions on the vernier scale.
The percentage error is evaluated by taking the proportion of the mean value of the absolute errors to mean value of the quantity.
Complete step-by-step solution:
Given:
The number of divisions of the vernier scale that coincide with the main scale without any load is, ${n_1} = 20$.
The number of divisions of the vernier scale coinciding with the main scale with any load is, ${n_2} = 45$.
The equation to determine the length of the wire without any load is,
${L_1} = M + {n_1}l$
Here, $M$ is the main scale reading and $l$ is the least count.
The equation to determine the length of the wire with any load is,
${L_2} = M + {n_2}l$
The equation to determine the change in the length of the wire is,
$\Delta L = {L_2} - {L_1}$
Substitute all the values in the above equation.
$\Delta L = \left( {M + {n_2}l} \right) - \left( {M + {n_1}l} \right)$
$ = \left( {{n_2} - {n_1}} \right)l$
$ = \left( {45 - 20} \right)l$
$ = 25l$
The equation to determine the Young’s modulus is,
$Y = \dfrac{{FL}}{{lA}}$
The equation to calculate the maximum percentage error in the Young’s modulus of the wire is,
$\dfrac{{\Delta Y}}{Y} = \left( {\dfrac{l}{{\Delta L}}} \right) \times 100$
Substitute all the values in the above equation.
$\dfrac{{\Delta Y}}{Y} = \left( {\dfrac{l}{{25l}}} \right) \times 100$
$ = 4\% $
Therefore, the maximum percentage error in the Young’s modulus of the wire is 4% and the option (D) is correct.
Note:- Take the reading carefully from the vernier scale because the percentage error depends on the number of divisions on the vernier scale.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

