
Draw two squares of different sides. Can you say they are similar? Explain. Find the ratio of their perimeters and areas. What do you observe?
Answer
575.1k+ views
Hint: Two squares with different side lengths.
We will make any two squares with two different side lengths. After that, we will take the ratio of the corresponding sides of the two different squares to check the similarity of these two squares.
We will use the formulas of the perimeter and area of the triangle to find the area and perimeter.
Complete step by step solution:
Let us draw two squares ABCD and EFGH of sides 2 cm and 4 cm.
Steps to draw a square:
1.Draw a side of the square using a ruler. Keep track of the length of this side so you can make all four sides the same length.
2.Considering the side drawn in the previous step as one line segment with two ends, construct a right angle on each end of it. Thus, the endpoint of the side drawn in the previous step will also be the two vertices of these right angles.
3.Mark a point on each of the new drawing arms (of the two right angles), at a distance (measured from each vertex of the right angle) which is the same as the length of the sides drawn initially. Join these two points.
As all the sides are in proportion
\[\dfrac{EF}{AB}=\dfrac{FG}{BC}=\dfrac{GH}{CD}=\dfrac{HE}{DA}=\dfrac{4}{2}=\dfrac{2}{1}\]
And all the pairs of corresponding angles are \[{{90}^{\circ }}\] .thus they are similar. Having corresponding angles at \[{{90}^{\circ }}\] means that all the corner points are perpendicular to each other.
So square \[ABCD\sim \text{square}\,\,EFGH\]
The perimeter of Square \[ABCD=4\times \text{length of sides=}4\times 2=8\,\text{centimeter}\text{.}\]
The perimeter of Square \[EFGH=4\times \text{length of sides=}4\times 4=16\,\text{centimeter}\]
The ratio of their perimeters \[\text{=}\dfrac{8}{16}=\dfrac{1}{2}\]
The ratio of their perimeters is the same as the ratio of their corresponding sides.
Area of \[ABCD=\text{length}\times \text{breadth=2}\times 2=4\,\text{centimeter square}\text{.}\]
Area of\[EFGH=\text{length}\times \text{breadth=4}\times 4=16\,\text{centimeter square}\]
The ratio of their area \[\text{=}\dfrac{4}{16}=\dfrac{1}{4}=\dfrac{{{1}^{2}}}{{{2}^{2}}}\]
The ratio of their areas is the same as the ratio of squares of the corresponding sides.
Note: First draw two squares and make sure their lengths are different. The drawing of the square should be done carefully.
we can also take different values for the length of each side since the ratio of the perimeter will always be the same as the ratio of the corresponding sides. And the Ratio of their areas will always be the same as the ratio of squares of the corresponding sides.
Construction of \[{{90}^{\circ }}\]should be such that they are accurate. We can use a compass or protractor.
We will make any two squares with two different side lengths. After that, we will take the ratio of the corresponding sides of the two different squares to check the similarity of these two squares.
We will use the formulas of the perimeter and area of the triangle to find the area and perimeter.
Complete step by step solution:
Let us draw two squares ABCD and EFGH of sides 2 cm and 4 cm.
Steps to draw a square:
1.Draw a side of the square using a ruler. Keep track of the length of this side so you can make all four sides the same length.
2.Considering the side drawn in the previous step as one line segment with two ends, construct a right angle on each end of it. Thus, the endpoint of the side drawn in the previous step will also be the two vertices of these right angles.
3.Mark a point on each of the new drawing arms (of the two right angles), at a distance (measured from each vertex of the right angle) which is the same as the length of the sides drawn initially. Join these two points.
As all the sides are in proportion
\[\dfrac{EF}{AB}=\dfrac{FG}{BC}=\dfrac{GH}{CD}=\dfrac{HE}{DA}=\dfrac{4}{2}=\dfrac{2}{1}\]
And all the pairs of corresponding angles are \[{{90}^{\circ }}\] .thus they are similar. Having corresponding angles at \[{{90}^{\circ }}\] means that all the corner points are perpendicular to each other.
So square \[ABCD\sim \text{square}\,\,EFGH\]
The perimeter of Square \[ABCD=4\times \text{length of sides=}4\times 2=8\,\text{centimeter}\text{.}\]
The perimeter of Square \[EFGH=4\times \text{length of sides=}4\times 4=16\,\text{centimeter}\]
The ratio of their perimeters \[\text{=}\dfrac{8}{16}=\dfrac{1}{2}\]
The ratio of their perimeters is the same as the ratio of their corresponding sides.
Area of \[ABCD=\text{length}\times \text{breadth=2}\times 2=4\,\text{centimeter square}\text{.}\]
Area of\[EFGH=\text{length}\times \text{breadth=4}\times 4=16\,\text{centimeter square}\]
The ratio of their area \[\text{=}\dfrac{4}{16}=\dfrac{1}{4}=\dfrac{{{1}^{2}}}{{{2}^{2}}}\]
The ratio of their areas is the same as the ratio of squares of the corresponding sides.
Note: First draw two squares and make sure their lengths are different. The drawing of the square should be done carefully.
we can also take different values for the length of each side since the ratio of the perimeter will always be the same as the ratio of the corresponding sides. And the Ratio of their areas will always be the same as the ratio of squares of the corresponding sides.
Construction of \[{{90}^{\circ }}\]should be such that they are accurate. We can use a compass or protractor.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Which of the following does not have a fundamental class 10 physics CBSE

State and prove the Pythagoras theorem-class-10-maths-CBSE

Differentiate between Food chain and Food web class 10 biology CBSE

State BPT theorem and prove it class 10 maths CBSE

A Gulab jamun contains sugar syrup up to about 30 of class 10 maths CBSE

Write the difference between soap and detergent class 10 chemistry CBSE

