Answer
Verified
439.2k+ views
Hint: For hybridisation determination, use the following formula:
\[{\rm{Hybridisation = }}\dfrac{{{\rm{ }}\begin{array}{*{20}{c}}
{{\rm{ Number of valence electrons }}}\\
{{\rm{ on sulphur }}}
\end{array}{\rm{ + }}\begin{array}{*{20}{c}}
{{\rm{number of monovalent }}}\\
{{\rm{groups attached }}}
\end{array} - \begin{array}{*{20}{c}}
{{\rm{ charge }}}\\
{{\rm{ with sign }}}
\end{array}{\rm{ }}}}{2}\]
Complete step by step answer:
( i ) \[{\rm{Xe}}{{\rm{O}}_{\rm{3}}}\]
The central xenon atom has 8 valence electrons. The molecule is electrically neutral with 0 overall charge. Determine the type of the hybridisation:
\[\begin{array}{l}
{\rm{Hybridisation = }}\dfrac{{{\rm{ }}\begin{array}{*{20}{c}}
{{\rm{ Number of valence electrons }}}\\
{{\rm{ on xenon }}}
\end{array}{\rm{ + }}\begin{array}{*{20}{c}}
{{\rm{number of monovalent }}}\\
{{\rm{groups attached }}}
\end{array} - \begin{array}{*{20}{c}}
{{\rm{ charge }}}\\
{{\rm{ with sign }}}
\end{array}{\rm{ }}}}{2}\\
{\rm{Hybridisation = }}\dfrac{{8 + 0 - 0}}{2}\\
{\rm{Hybridisation = }}\dfrac{8}{2}\\
{\rm{Hybridisation = }}4{\rm{ }}
\end{array}\]
Here the number of monovalent groups is taken as zero as oxygen is a bivalent group.
Hybridisation =4 suggests \[{\rm{s}}{{\rm{p}}^3}\] hybridisation. Three bonding domains and one lone pair of electrons are present around the central xenon atom. The electron pair geometry is tetrahedral and the molecular geometry is trigonal planar. The structure is as shown below:
( ii ) \[{{\rm{H}}_{\rm{2}}}{\rm{S}}{{\rm{O}}_{\rm{4}}}\]
The central sulphur atom has 6 valence electrons. The molecule is electrically neutral with 0 overall charge. Determine the type of the hybridisation:
\[\begin{array}{l}
{\rm{Hybridisation = }}\dfrac{{{\rm{ }}\begin{array}{*{20}{c}}
{{\rm{ Number of valence electrons }}}\\
{{\rm{ on sulphur }}}
\end{array}{\rm{ + }}\begin{array}{*{20}{c}}
{{\rm{number of monovalent }}}\\
{{\rm{groups attached }}}
\end{array} - \begin{array}{*{20}{c}}
{{\rm{ charge }}}\\
{{\rm{ with sign }}}
\end{array}{\rm{ }}}}{2}\\
{\rm{Hybridisation = }}\dfrac{{6 + 2 - 0}}{2}\\
{\rm{Hybridisation = }}\dfrac{8}{2}\\
{\rm{Hybridisation = }}4{\rm{ }}
\end{array}\]
Here the number of monovalent groups is taken as two as two hydroxyl groups are monovalent groups and oxygen (having double bond) is bivalent group.
Hybridisation =4 suggests \[{\rm{s}}{{\rm{p}}^3}\] hybridisation. Four bonding domains and zero lone pairs of electrons are present around the central sulphur atom. The geometry is tetrahedral. The structure is as shown below:
Note:
Hybridisation is the process of mixing two or more atomic orbitals, having almost the same energy, to form the same number of identical and degenerate new types of orbitals. The new orbitals formed are called hybrid orbitals. Hybridisation is used in organic and inorganic chemistry. Hybridisation is a simple theoretical model used to explain molecular geometry. The theory of hybridisation was needed as the original valence bond theory could not explain the molecular geometry.
\[{\rm{Hybridisation = }}\dfrac{{{\rm{ }}\begin{array}{*{20}{c}}
{{\rm{ Number of valence electrons }}}\\
{{\rm{ on sulphur }}}
\end{array}{\rm{ + }}\begin{array}{*{20}{c}}
{{\rm{number of monovalent }}}\\
{{\rm{groups attached }}}
\end{array} - \begin{array}{*{20}{c}}
{{\rm{ charge }}}\\
{{\rm{ with sign }}}
\end{array}{\rm{ }}}}{2}\]
Complete step by step answer:
( i ) \[{\rm{Xe}}{{\rm{O}}_{\rm{3}}}\]
The central xenon atom has 8 valence electrons. The molecule is electrically neutral with 0 overall charge. Determine the type of the hybridisation:
\[\begin{array}{l}
{\rm{Hybridisation = }}\dfrac{{{\rm{ }}\begin{array}{*{20}{c}}
{{\rm{ Number of valence electrons }}}\\
{{\rm{ on xenon }}}
\end{array}{\rm{ + }}\begin{array}{*{20}{c}}
{{\rm{number of monovalent }}}\\
{{\rm{groups attached }}}
\end{array} - \begin{array}{*{20}{c}}
{{\rm{ charge }}}\\
{{\rm{ with sign }}}
\end{array}{\rm{ }}}}{2}\\
{\rm{Hybridisation = }}\dfrac{{8 + 0 - 0}}{2}\\
{\rm{Hybridisation = }}\dfrac{8}{2}\\
{\rm{Hybridisation = }}4{\rm{ }}
\end{array}\]
Here the number of monovalent groups is taken as zero as oxygen is a bivalent group.
Hybridisation =4 suggests \[{\rm{s}}{{\rm{p}}^3}\] hybridisation. Three bonding domains and one lone pair of electrons are present around the central xenon atom. The electron pair geometry is tetrahedral and the molecular geometry is trigonal planar. The structure is as shown below:
( ii ) \[{{\rm{H}}_{\rm{2}}}{\rm{S}}{{\rm{O}}_{\rm{4}}}\]
The central sulphur atom has 6 valence electrons. The molecule is electrically neutral with 0 overall charge. Determine the type of the hybridisation:
\[\begin{array}{l}
{\rm{Hybridisation = }}\dfrac{{{\rm{ }}\begin{array}{*{20}{c}}
{{\rm{ Number of valence electrons }}}\\
{{\rm{ on sulphur }}}
\end{array}{\rm{ + }}\begin{array}{*{20}{c}}
{{\rm{number of monovalent }}}\\
{{\rm{groups attached }}}
\end{array} - \begin{array}{*{20}{c}}
{{\rm{ charge }}}\\
{{\rm{ with sign }}}
\end{array}{\rm{ }}}}{2}\\
{\rm{Hybridisation = }}\dfrac{{6 + 2 - 0}}{2}\\
{\rm{Hybridisation = }}\dfrac{8}{2}\\
{\rm{Hybridisation = }}4{\rm{ }}
\end{array}\]
Here the number of monovalent groups is taken as two as two hydroxyl groups are monovalent groups and oxygen (having double bond) is bivalent group.
Hybridisation =4 suggests \[{\rm{s}}{{\rm{p}}^3}\] hybridisation. Four bonding domains and zero lone pairs of electrons are present around the central sulphur atom. The geometry is tetrahedral. The structure is as shown below:
Note:
Hybridisation is the process of mixing two or more atomic orbitals, having almost the same energy, to form the same number of identical and degenerate new types of orbitals. The new orbitals formed are called hybrid orbitals. Hybridisation is used in organic and inorganic chemistry. Hybridisation is a simple theoretical model used to explain molecular geometry. The theory of hybridisation was needed as the original valence bond theory could not explain the molecular geometry.
Recently Updated Pages
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Advantages and disadvantages of science
Trending doubts
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Which are the Top 10 Largest Countries of the World?
10 examples of evaporation in daily life with explanations
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE
Difference Between Plant Cell and Animal Cell