
Draw an equilateral triangle of side 5 cm. Draw its inscribed circle. Measure the radius of the inscribed circle.
Answer
615k+ views
Hint: Take the triangle as ABC. Draw base BC as 5 cm and construct the equilateral triangle with side 5 cm. Take angle bisectors of B and C. Find the center of the circle, and with the center O, draw a circle inscribed in triangle ABC.
Complete step-by-step answer:
Let us name the equilateral triangle as ABC.
First draw the line segment of 5 cm. Let us take BC = 5 cm. Then with center as B and C, draw two arcs of 5 cm length. These arcs intersect at point A.
Thus we got an equilateral triangle ABC by joining the points AB and AC.
As it’s an equilateral triangle, we know all the sides are equal which is 5 cm. Similarly all the angles of triangle ABC is similar, i.e. the angle is \[{{60}^{\circ }}.\]
Let us draw angle bisectors from B and C of the triangle and they meet at point O, i.e. angle bisectors of \[\angle B\] and \[\angle C\] intersect each other at O. From point O, we can say that \[OL\bot BC\], i.e. OL is perpendicular to the line segment BC.
Now with center O and radius as OL, draw a circle which touches the sides of \[\Delta ABC.\]
Thus we got the required figure, where an equilateral triangle of side 5 cm is drawn and a circle is inscribed in it.
Thus if we measure the radius of the inscribed circle, OL = 1.4 cm.
Hence radius, OL = 1.4 cm.
Note: We can also take angle bisectors and A and C or even B and C. We will get the same center as given in the figure. Draw OL perpendicular to BC in order to get the radius, then the construction of circle becomes easier and the circle should touch the sides of the \[\Delta ABC.\]
Complete step-by-step answer:
Let us name the equilateral triangle as ABC.
First draw the line segment of 5 cm. Let us take BC = 5 cm. Then with center as B and C, draw two arcs of 5 cm length. These arcs intersect at point A.
Thus we got an equilateral triangle ABC by joining the points AB and AC.
As it’s an equilateral triangle, we know all the sides are equal which is 5 cm. Similarly all the angles of triangle ABC is similar, i.e. the angle is \[{{60}^{\circ }}.\]
Let us draw angle bisectors from B and C of the triangle and they meet at point O, i.e. angle bisectors of \[\angle B\] and \[\angle C\] intersect each other at O. From point O, we can say that \[OL\bot BC\], i.e. OL is perpendicular to the line segment BC.
Now with center O and radius as OL, draw a circle which touches the sides of \[\Delta ABC.\]
Thus we got the required figure, where an equilateral triangle of side 5 cm is drawn and a circle is inscribed in it.
Thus if we measure the radius of the inscribed circle, OL = 1.4 cm.
Hence radius, OL = 1.4 cm.
Note: We can also take angle bisectors and A and C or even B and C. We will get the same center as given in the figure. Draw OL perpendicular to BC in order to get the radius, then the construction of circle becomes easier and the circle should touch the sides of the \[\Delta ABC.\]
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Who Won 36 Oscar Awards? Record Holder Revealed

What is the median of the first 10 natural numbers class 10 maths CBSE

Who gave "Inqilab Zindabad" slogan?

Who was Subhash Chandra Bose Why was he called Net class 10 english CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

