
What is the domain and range of:\[y = \sin \left( {{x^2} - 3x + 2} \right)\]
Domain =R: Range=\[\left[ { - \dfrac{1}{2},\dfrac{1}{2}} \right]\]
Domain=R: Range=\[\left[ { - 1,1} \right]\]
Domain=R: Range=\[\left[ {0,1} \right]\]
None of these
Answer
562.8k+ views
Hint: In this question a function is given so we will substitute the value of x in the function and we will check for the domain and range of the function.
Complete step-by-step answer:
\[y = \sin \left( {{x^2} - 3x + 2} \right)\]
Let the function be
\[f\left( x \right) = \sin \left( {{x^2} - 3x + 2} \right)\]
Now we substitute the value any of x in the function to find the domain of the function
When x=2
Hence
\[
f\left( 2 \right) = \sin \left( {{2^2} - 3 \times 2 + 2} \right) \\
= \sin (0) \\
= 0 \;
\]
When x=-4
\[
f\left( { - 4} \right) = \sin \left( {{{\left( { - 4} \right)}^2} - 3 \times \left( { - 4} \right) + 2} \right) \\
= \sin (16 + 12 + 2) \\
= \sin \left( {30} \right) \\
= 0.5 \;
\]
When \[x = \pi \]
\[
f\left( \pi \right) = \sin \left( {{\pi ^2} - 3 \times \left( \pi \right) + 2} \right) \\
= \sin (2.44) \\
= 0.042 \;
\]
Now from the above calculation we can say whenever a real value of x is substituted in the function \[f\left( x \right) = \sin \left( {{x^2} - 3x + 2} \right)\], it gives a real number
Hence we can say the domain of the function \[y = \sin \left( {{x^2} - 3x + 2} \right)\] is real number R.
Now in the function \[y = \sin \left( {{x^2} - 3x + 2} \right)\], the function is a sine function and the range of the sine function is \[\left[ { - 1,1} \right]\].
\[ - 1 \leqslant \sin \theta \leqslant 1\]
Now in the function \[y = \sin \left( {{x^2} - 3x + 2} \right)\]as already observed above if we substitute any real number in the function it gives a real number which lies in the range \[\left[ { - 1,1} \right]\].
Hence we can say the range of the function \[y = \sin \left( {{x^2} - 3x + 2} \right)\]is \[\left[ { - 1,1} \right]\].
Therefore the domain of the function \[y = \sin \left( {{x^2} - 3x + 2} \right)\] is R and the range is\[\left[ { - 1,1} \right]\].
So, the correct answer is “Option C”.
Note: Students must note that the domain is the set of all possible values of x for which the function f(x) will be defined and the range refers to the possible range of values that the function f(x) can attain for those values of x which are in the domain of f(x).
Complete step-by-step answer:
\[y = \sin \left( {{x^2} - 3x + 2} \right)\]
Let the function be
\[f\left( x \right) = \sin \left( {{x^2} - 3x + 2} \right)\]
Now we substitute the value any of x in the function to find the domain of the function
When x=2
Hence
\[
f\left( 2 \right) = \sin \left( {{2^2} - 3 \times 2 + 2} \right) \\
= \sin (0) \\
= 0 \;
\]
When x=-4
\[
f\left( { - 4} \right) = \sin \left( {{{\left( { - 4} \right)}^2} - 3 \times \left( { - 4} \right) + 2} \right) \\
= \sin (16 + 12 + 2) \\
= \sin \left( {30} \right) \\
= 0.5 \;
\]
When \[x = \pi \]
\[
f\left( \pi \right) = \sin \left( {{\pi ^2} - 3 \times \left( \pi \right) + 2} \right) \\
= \sin (2.44) \\
= 0.042 \;
\]
Now from the above calculation we can say whenever a real value of x is substituted in the function \[f\left( x \right) = \sin \left( {{x^2} - 3x + 2} \right)\], it gives a real number
Hence we can say the domain of the function \[y = \sin \left( {{x^2} - 3x + 2} \right)\] is real number R.
Now in the function \[y = \sin \left( {{x^2} - 3x + 2} \right)\], the function is a sine function and the range of the sine function is \[\left[ { - 1,1} \right]\].
\[ - 1 \leqslant \sin \theta \leqslant 1\]
Now in the function \[y = \sin \left( {{x^2} - 3x + 2} \right)\]as already observed above if we substitute any real number in the function it gives a real number which lies in the range \[\left[ { - 1,1} \right]\].
Hence we can say the range of the function \[y = \sin \left( {{x^2} - 3x + 2} \right)\]is \[\left[ { - 1,1} \right]\].
Therefore the domain of the function \[y = \sin \left( {{x^2} - 3x + 2} \right)\] is R and the range is\[\left[ { - 1,1} \right]\].
So, the correct answer is “Option C”.
Note: Students must note that the domain is the set of all possible values of x for which the function f(x) will be defined and the range refers to the possible range of values that the function f(x) can attain for those values of x which are in the domain of f(x).
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

What is periodicity class 11 chemistry CBSE

What is a periderm How does periderm formation take class 11 biology CBSE

Mention the basic forces in nature class 11 physics CBSE

What are porins class 11 biology CBSE

