
What does molecular orbital theory explain?
Answer
526.2k+ views
Hint:Molecular orbital theory was put forward by Hund and Mulliken, which can be applied to explain the properties, that was not explained by Valence bond theory. This theory explained the paramagnetic nature of $\text{O}_{\text{2}}^{\text{+}}$ion as per Valence bond theory it should be diamagnetic.
Molecular orbital diagram is the diagrammatic representation of all the molecular orbital and electronic configuration of molecular orbitals in a molecule. There are two types of molecular orbitals; bonding molecular orbital and antibonding molecular orbital.
Atomic orbital lose their identity during molecule formation (overlapping) and form a new type of orbitals known as molecular orbitals. The atomic orbitals of comparable energy and proper symmetry combine to form molecular orbitals.
Complete step-by-step answer:Here are the following postulates of molecular orbital theory –
The electron in a molecule is present in the various molecular orbitals. The number of molecular orbitals formed is equal to the number of combining atomic orbitals. The molecular orbital gives electron probability distribution around a group of nuclei in a molecule.
The electron in molecular orbitals is influenced by two or more nuclei depending on the number of atoms in a molecule; hence a molecular orbital is polycentric.
The bonding molecular orbital has lower energy and greater stability in respect to the corresponding anti-bonding molecular orbital.
The order of energies of molecular orbitals for homonuclear diatomic molecule like$\text{O}_{\text{2}}^{{}}$, ${{\text{F}}_{\text{2}}}$and \[\text{N}{{\text{e}}_{\text{2}}}\] is-$\text{ }\!\!\sigma\!\!\text{ 1s}$,${{\text{ }\!\!\sigma\!\!\text{ }}^{*}}\text{1s}$,$\text{ }\!\!\sigma\!\!\text{ 2s}$,${{\text{ }\!\!\sigma\!\!\text{ }}^{*}}\text{2s}$,$\text{ }\!\!\sigma\!\!\text{ 2}{{\text{p}}_{z}}$,$\text{ }\!\!\pi\!\!\text{ 2}{{\text{p}}_{\text{x}}}$= $\text{ }\!\!\pi\!\!\text{ 2}{{\text{p}}_{\text{y}}}$,${{\text{ }\!\!\pi\!\!\text{ }}^{*}}\text{2}{{\text{p}}_{\text{x}}}$=$\,{{\text{ }\!\!\pi\!\!\text{ }}^{*}}\text{2}{{\text{p}}_{\text{y}}}$,${{\text{ }\!\!\sigma\!\!\text{ }}^{*}}\text{2}{{\text{p}}_{z}}$.Where- $\text{ }\!\!\sigma\!\!\text{ }$,$\text{ }\!\!\pi\!\!\text{ }$ represents the bonding molecular orbital, while${{\text{ }\!\!\sigma\!\!\text{ }}^{*}}$, ${{\text{ }\!\!\pi\!\!\text{ }}^{*}}$ represents the anti-bonding molecular orbital in a molecular orbital diagram.
The order of energies of molecular orbitals for homonuclear diatomic molecule like${{\text{B}}_{\text{2}}}$, ${{\text{C}}_{\text{2}}}$and \[{{\text{N}}_{\text{2}}}\] is-$\text{ }\!\!\sigma\!\!\text{ 1s}$,${{\text{ }\!\!\sigma\!\!\text{ }}^{*}}\text{1s}$,$\text{ }\!\!\sigma\!\!\text{ 2s}$,${{\text{ }\!\!\sigma\!\!\text{ }}^{*}}\text{2s}$, $\text{ }\!\!\pi\!\!\text{ 2}{{\text{p}}_{\text{x}}}$=$\text{ }\!\!\pi\!\!\text{ 2}{{\text{p}}_{\text{y}}}$ ,$\text{ }\!\!\sigma\!\!\text{ 2}{{\text{p}}_{z}}$$\text{,}{{\text{ }\!\!\pi\!\!\text{ }}^{*}}\text{2}{{\text{p}}_{\text{x}}}$=$\,{{\text{ }\!\!\pi\!\!\text{ }}^{*}}\text{2}{{\text{p}}_{\text{y}}}$,${{\text{ }\!\!\sigma\!\!\text{ }}^{*}}\text{2}{{\text{p}}_{z}}$.
The stability of molecules can be determined by bond order, higher the bond order higher the stability. The bond order can be calculated as : $\begin{align}
& \text{Bond}\,\text{order}\,\text{=}\,\dfrac{\text{1}}{\text{2}}\text{(}{{\text{N}}_{\text{b}}}\text{-}{{\text{N}}_{\text{a}}}\text{)} \\
& \text{ }\!\!\{\!\!\text{ }{{\text{N}}_{\text{b}}}\text{=}\,\text{no}\,\text{of}\,\text{bonding}\,\text{electrons,}\,{{\text{N}}_{\text{a}}}\text{=}\,\text{no}\,\text{of}\,\text{antibonding}\,\text{electrons }\!\!\}\!\!\text{ } \\
\end{align}$
Higher the bond order, higher is the bond dissociation energy and smaller is the bond length.
Note:Electronic configuration of molecular orbital must be according to Hund’s maximum multiplicity rule, according to which the orbital available in the subshell of a molecule are first filled singly with parallel spin electron before they begin to pair and subshell give maximum number of unpaired electron with parallel spin.
Molecular orbital diagram is the diagrammatic representation of all the molecular orbital and electronic configuration of molecular orbitals in a molecule. There are two types of molecular orbitals; bonding molecular orbital and antibonding molecular orbital.
Atomic orbital lose their identity during molecule formation (overlapping) and form a new type of orbitals known as molecular orbitals. The atomic orbitals of comparable energy and proper symmetry combine to form molecular orbitals.
Complete step-by-step answer:Here are the following postulates of molecular orbital theory –
The electron in a molecule is present in the various molecular orbitals. The number of molecular orbitals formed is equal to the number of combining atomic orbitals. The molecular orbital gives electron probability distribution around a group of nuclei in a molecule.
The electron in molecular orbitals is influenced by two or more nuclei depending on the number of atoms in a molecule; hence a molecular orbital is polycentric.
The bonding molecular orbital has lower energy and greater stability in respect to the corresponding anti-bonding molecular orbital.
The order of energies of molecular orbitals for homonuclear diatomic molecule like$\text{O}_{\text{2}}^{{}}$, ${{\text{F}}_{\text{2}}}$and \[\text{N}{{\text{e}}_{\text{2}}}\] is-$\text{ }\!\!\sigma\!\!\text{ 1s}$,${{\text{ }\!\!\sigma\!\!\text{ }}^{*}}\text{1s}$,$\text{ }\!\!\sigma\!\!\text{ 2s}$,${{\text{ }\!\!\sigma\!\!\text{ }}^{*}}\text{2s}$,$\text{ }\!\!\sigma\!\!\text{ 2}{{\text{p}}_{z}}$,$\text{ }\!\!\pi\!\!\text{ 2}{{\text{p}}_{\text{x}}}$= $\text{ }\!\!\pi\!\!\text{ 2}{{\text{p}}_{\text{y}}}$,${{\text{ }\!\!\pi\!\!\text{ }}^{*}}\text{2}{{\text{p}}_{\text{x}}}$=$\,{{\text{ }\!\!\pi\!\!\text{ }}^{*}}\text{2}{{\text{p}}_{\text{y}}}$,${{\text{ }\!\!\sigma\!\!\text{ }}^{*}}\text{2}{{\text{p}}_{z}}$.Where- $\text{ }\!\!\sigma\!\!\text{ }$,$\text{ }\!\!\pi\!\!\text{ }$ represents the bonding molecular orbital, while${{\text{ }\!\!\sigma\!\!\text{ }}^{*}}$, ${{\text{ }\!\!\pi\!\!\text{ }}^{*}}$ represents the anti-bonding molecular orbital in a molecular orbital diagram.
The order of energies of molecular orbitals for homonuclear diatomic molecule like${{\text{B}}_{\text{2}}}$, ${{\text{C}}_{\text{2}}}$and \[{{\text{N}}_{\text{2}}}\] is-$\text{ }\!\!\sigma\!\!\text{ 1s}$,${{\text{ }\!\!\sigma\!\!\text{ }}^{*}}\text{1s}$,$\text{ }\!\!\sigma\!\!\text{ 2s}$,${{\text{ }\!\!\sigma\!\!\text{ }}^{*}}\text{2s}$, $\text{ }\!\!\pi\!\!\text{ 2}{{\text{p}}_{\text{x}}}$=$\text{ }\!\!\pi\!\!\text{ 2}{{\text{p}}_{\text{y}}}$ ,$\text{ }\!\!\sigma\!\!\text{ 2}{{\text{p}}_{z}}$$\text{,}{{\text{ }\!\!\pi\!\!\text{ }}^{*}}\text{2}{{\text{p}}_{\text{x}}}$=$\,{{\text{ }\!\!\pi\!\!\text{ }}^{*}}\text{2}{{\text{p}}_{\text{y}}}$,${{\text{ }\!\!\sigma\!\!\text{ }}^{*}}\text{2}{{\text{p}}_{z}}$.
The stability of molecules can be determined by bond order, higher the bond order higher the stability. The bond order can be calculated as : $\begin{align}
& \text{Bond}\,\text{order}\,\text{=}\,\dfrac{\text{1}}{\text{2}}\text{(}{{\text{N}}_{\text{b}}}\text{-}{{\text{N}}_{\text{a}}}\text{)} \\
& \text{ }\!\!\{\!\!\text{ }{{\text{N}}_{\text{b}}}\text{=}\,\text{no}\,\text{of}\,\text{bonding}\,\text{electrons,}\,{{\text{N}}_{\text{a}}}\text{=}\,\text{no}\,\text{of}\,\text{antibonding}\,\text{electrons }\!\!\}\!\!\text{ } \\
\end{align}$
Higher the bond order, higher is the bond dissociation energy and smaller is the bond length.
Note:Electronic configuration of molecular orbital must be according to Hund’s maximum multiplicity rule, according to which the orbital available in the subshell of a molecule are first filled singly with parallel spin electron before they begin to pair and subshell give maximum number of unpaired electron with parallel spin.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

