
What does equal $ \arcsin \left( {\sin \left( {\dfrac{{ - \pi }}{2}} \right)} \right) $ equals?
Answer
510.3k+ views
Hint: In order to solve the function given or equation, we need to simplify the brackets one by one. Simplifying with the inner bracket we get an odd function, solving it, we get a value and next left with the outer bracket, further simplifying it with some known facts, and we get our results.
Complete step-by-step answer:
We are given with the function $ \arcsin \left( {\sin \left( {\dfrac{{ - \pi }}{2}} \right)} \right) $ .
Solving with the inner bracket we can see that there is an odd function of sine and we know that $ \sin \left( { - x} \right) = - \sin x $ , for an odd function.
Using this for our inner bracket we get that $ \sin \left( { - \dfrac{\pi }{2}} \right) = - \sin \dfrac{\pi }{2} $ that implies $ \arcsin \left( {\sin \left( { - \dfrac{\pi }{2}} \right)} \right) = \arcsin \left( { - \sin \dfrac{\pi }{2}} \right) $ .
From trigonometric values we know that $ \sin \dfrac{\pi }{2} = 1 $ that implies $ - \sin \dfrac{\pi }{2} = - 1 $ .
Substituting it in our equation, we get that:
$ \arcsin \left( { - \sin \dfrac{\pi }{2}} \right) = \arcsin \left( { - 1} \right) $ . ………..(i)
Now, let $ y = \sin \left( { - x} \right) $ .
Multiplying both the sides by $ {\sin ^{ - 1}} $ and, we get $ {\sin ^{ - 1}}y = si{n^{ - 1}}\left( {\sin \left( { - x} \right)} \right) = - x $ .
Similarly, if $ x = \dfrac{\pi }{2} $ , substitute in $ y = \sin \left( { - x} \right) $ and we get:
\[
y = \sin \left( { - \dfrac{\pi }{2}} \right) \\
y = - \sin \dfrac{\pi }{2} = - 1 \\
= > - \sin \dfrac{\pi }{2} = - 1 \;
\]
Multiplying both the sides by $ {\sin ^{ - 1}} $ :
\[
- 1 = - \sin \dfrac{\pi }{2} \\
{\sin ^{ - 1}}\left( { - 1} \right) = {\sin ^{ - 1}}\left( {\sin \left( { - \dfrac{\pi }{2}} \right)} \right) \\
= > {\sin ^{ - 1}}\left( { - 1} \right) = - \dfrac{\pi }{2} \;
\]
As, we know, $ \arcsin $ is nothing but $ {\sin ^{ - 1}} $ .
Substitute this term in (i) and we get:
$
\arcsin \left( { - \sin \dfrac{\pi }{2}} \right) = \arcsin \left( { - 1} \right) = {\sin ^{ - 1}}\left( { - 1} \right) \\
{\sin ^{ - 1}}\left( { - 1} \right) = - \dfrac{\pi }{2} \;
$
Therefore, $ \arcsin \left( {\sin \left( {\dfrac{{ - \pi }}{2}} \right)} \right) $ equals $ - \dfrac{\pi }{2} $ .
So, the correct answer is “$ - \dfrac{\pi }{2} $”.
Note: $ \arcsin \left( x \right) = {\sin ^{ - 1}}x $ , arcsin is nothing but sine inverse.
$ \sin (x) $ is an odd function that means $ \sin \left( { - x} \right) = - \sin x $ .
Since, we know that the range of sine function is $ \left( { - \dfrac{\pi }{2},\dfrac{\pi }{2}} \right) $ , then according to that the range of arcsin function would be $ \left( { - 1,1} \right) $ as $ \sin \dfrac{\pi }{2} = 1 $ .
Complete step-by-step answer:
We are given with the function $ \arcsin \left( {\sin \left( {\dfrac{{ - \pi }}{2}} \right)} \right) $ .
Solving with the inner bracket we can see that there is an odd function of sine and we know that $ \sin \left( { - x} \right) = - \sin x $ , for an odd function.
Using this for our inner bracket we get that $ \sin \left( { - \dfrac{\pi }{2}} \right) = - \sin \dfrac{\pi }{2} $ that implies $ \arcsin \left( {\sin \left( { - \dfrac{\pi }{2}} \right)} \right) = \arcsin \left( { - \sin \dfrac{\pi }{2}} \right) $ .
From trigonometric values we know that $ \sin \dfrac{\pi }{2} = 1 $ that implies $ - \sin \dfrac{\pi }{2} = - 1 $ .
Substituting it in our equation, we get that:
$ \arcsin \left( { - \sin \dfrac{\pi }{2}} \right) = \arcsin \left( { - 1} \right) $ . ………..(i)
Now, let $ y = \sin \left( { - x} \right) $ .
Multiplying both the sides by $ {\sin ^{ - 1}} $ and, we get $ {\sin ^{ - 1}}y = si{n^{ - 1}}\left( {\sin \left( { - x} \right)} \right) = - x $ .
Similarly, if $ x = \dfrac{\pi }{2} $ , substitute in $ y = \sin \left( { - x} \right) $ and we get:
\[
y = \sin \left( { - \dfrac{\pi }{2}} \right) \\
y = - \sin \dfrac{\pi }{2} = - 1 \\
= > - \sin \dfrac{\pi }{2} = - 1 \;
\]
Multiplying both the sides by $ {\sin ^{ - 1}} $ :
\[
- 1 = - \sin \dfrac{\pi }{2} \\
{\sin ^{ - 1}}\left( { - 1} \right) = {\sin ^{ - 1}}\left( {\sin \left( { - \dfrac{\pi }{2}} \right)} \right) \\
= > {\sin ^{ - 1}}\left( { - 1} \right) = - \dfrac{\pi }{2} \;
\]
As, we know, $ \arcsin $ is nothing but $ {\sin ^{ - 1}} $ .
Substitute this term in (i) and we get:
$
\arcsin \left( { - \sin \dfrac{\pi }{2}} \right) = \arcsin \left( { - 1} \right) = {\sin ^{ - 1}}\left( { - 1} \right) \\
{\sin ^{ - 1}}\left( { - 1} \right) = - \dfrac{\pi }{2} \;
$
Therefore, $ \arcsin \left( {\sin \left( {\dfrac{{ - \pi }}{2}} \right)} \right) $ equals $ - \dfrac{\pi }{2} $ .
So, the correct answer is “$ - \dfrac{\pi }{2} $”.
Note: $ \arcsin \left( x \right) = {\sin ^{ - 1}}x $ , arcsin is nothing but sine inverse.
$ \sin (x) $ is an odd function that means $ \sin \left( { - x} \right) = - \sin x $ .
Since, we know that the range of sine function is $ \left( { - \dfrac{\pi }{2},\dfrac{\pi }{2}} \right) $ , then according to that the range of arcsin function would be $ \left( { - 1,1} \right) $ as $ \sin \dfrac{\pi }{2} = 1 $ .
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is BLO What is the full form of BLO class 8 social science CBSE

What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which places in India experience sunrise first and class 9 social science CBSE

Which animal has three hearts class 11 biology CBSE

Who was the first woman to receive Bharat Ratna?

What are the major means of transport Explain each class 12 social science CBSE

