
What does equal $ \arcsin \left( {\sin \left( {\dfrac{{ - \pi }}{2}} \right)} \right) $ equals?
Answer
525.6k+ views
Hint: In order to solve the function given or equation, we need to simplify the brackets one by one. Simplifying with the inner bracket we get an odd function, solving it, we get a value and next left with the outer bracket, further simplifying it with some known facts, and we get our results.
Complete step-by-step answer:
We are given with the function $ \arcsin \left( {\sin \left( {\dfrac{{ - \pi }}{2}} \right)} \right) $ .
Solving with the inner bracket we can see that there is an odd function of sine and we know that $ \sin \left( { - x} \right) = - \sin x $ , for an odd function.
Using this for our inner bracket we get that $ \sin \left( { - \dfrac{\pi }{2}} \right) = - \sin \dfrac{\pi }{2} $ that implies $ \arcsin \left( {\sin \left( { - \dfrac{\pi }{2}} \right)} \right) = \arcsin \left( { - \sin \dfrac{\pi }{2}} \right) $ .
From trigonometric values we know that $ \sin \dfrac{\pi }{2} = 1 $ that implies $ - \sin \dfrac{\pi }{2} = - 1 $ .
Substituting it in our equation, we get that:
$ \arcsin \left( { - \sin \dfrac{\pi }{2}} \right) = \arcsin \left( { - 1} \right) $ . ………..(i)
Now, let $ y = \sin \left( { - x} \right) $ .
Multiplying both the sides by $ {\sin ^{ - 1}} $ and, we get $ {\sin ^{ - 1}}y = si{n^{ - 1}}\left( {\sin \left( { - x} \right)} \right) = - x $ .
Similarly, if $ x = \dfrac{\pi }{2} $ , substitute in $ y = \sin \left( { - x} \right) $ and we get:
\[
y = \sin \left( { - \dfrac{\pi }{2}} \right) \\
y = - \sin \dfrac{\pi }{2} = - 1 \\
= > - \sin \dfrac{\pi }{2} = - 1 \;
\]
Multiplying both the sides by $ {\sin ^{ - 1}} $ :
\[
- 1 = - \sin \dfrac{\pi }{2} \\
{\sin ^{ - 1}}\left( { - 1} \right) = {\sin ^{ - 1}}\left( {\sin \left( { - \dfrac{\pi }{2}} \right)} \right) \\
= > {\sin ^{ - 1}}\left( { - 1} \right) = - \dfrac{\pi }{2} \;
\]
As, we know, $ \arcsin $ is nothing but $ {\sin ^{ - 1}} $ .
Substitute this term in (i) and we get:
$
\arcsin \left( { - \sin \dfrac{\pi }{2}} \right) = \arcsin \left( { - 1} \right) = {\sin ^{ - 1}}\left( { - 1} \right) \\
{\sin ^{ - 1}}\left( { - 1} \right) = - \dfrac{\pi }{2} \;
$
Therefore, $ \arcsin \left( {\sin \left( {\dfrac{{ - \pi }}{2}} \right)} \right) $ equals $ - \dfrac{\pi }{2} $ .
So, the correct answer is “$ - \dfrac{\pi }{2} $”.
Note: $ \arcsin \left( x \right) = {\sin ^{ - 1}}x $ , arcsin is nothing but sine inverse.
$ \sin (x) $ is an odd function that means $ \sin \left( { - x} \right) = - \sin x $ .
Since, we know that the range of sine function is $ \left( { - \dfrac{\pi }{2},\dfrac{\pi }{2}} \right) $ , then according to that the range of arcsin function would be $ \left( { - 1,1} \right) $ as $ \sin \dfrac{\pi }{2} = 1 $ .
Complete step-by-step answer:
We are given with the function $ \arcsin \left( {\sin \left( {\dfrac{{ - \pi }}{2}} \right)} \right) $ .
Solving with the inner bracket we can see that there is an odd function of sine and we know that $ \sin \left( { - x} \right) = - \sin x $ , for an odd function.
Using this for our inner bracket we get that $ \sin \left( { - \dfrac{\pi }{2}} \right) = - \sin \dfrac{\pi }{2} $ that implies $ \arcsin \left( {\sin \left( { - \dfrac{\pi }{2}} \right)} \right) = \arcsin \left( { - \sin \dfrac{\pi }{2}} \right) $ .
From trigonometric values we know that $ \sin \dfrac{\pi }{2} = 1 $ that implies $ - \sin \dfrac{\pi }{2} = - 1 $ .
Substituting it in our equation, we get that:
$ \arcsin \left( { - \sin \dfrac{\pi }{2}} \right) = \arcsin \left( { - 1} \right) $ . ………..(i)
Now, let $ y = \sin \left( { - x} \right) $ .
Multiplying both the sides by $ {\sin ^{ - 1}} $ and, we get $ {\sin ^{ - 1}}y = si{n^{ - 1}}\left( {\sin \left( { - x} \right)} \right) = - x $ .
Similarly, if $ x = \dfrac{\pi }{2} $ , substitute in $ y = \sin \left( { - x} \right) $ and we get:
\[
y = \sin \left( { - \dfrac{\pi }{2}} \right) \\
y = - \sin \dfrac{\pi }{2} = - 1 \\
= > - \sin \dfrac{\pi }{2} = - 1 \;
\]
Multiplying both the sides by $ {\sin ^{ - 1}} $ :
\[
- 1 = - \sin \dfrac{\pi }{2} \\
{\sin ^{ - 1}}\left( { - 1} \right) = {\sin ^{ - 1}}\left( {\sin \left( { - \dfrac{\pi }{2}} \right)} \right) \\
= > {\sin ^{ - 1}}\left( { - 1} \right) = - \dfrac{\pi }{2} \;
\]
As, we know, $ \arcsin $ is nothing but $ {\sin ^{ - 1}} $ .
Substitute this term in (i) and we get:
$
\arcsin \left( { - \sin \dfrac{\pi }{2}} \right) = \arcsin \left( { - 1} \right) = {\sin ^{ - 1}}\left( { - 1} \right) \\
{\sin ^{ - 1}}\left( { - 1} \right) = - \dfrac{\pi }{2} \;
$
Therefore, $ \arcsin \left( {\sin \left( {\dfrac{{ - \pi }}{2}} \right)} \right) $ equals $ - \dfrac{\pi }{2} $ .
So, the correct answer is “$ - \dfrac{\pi }{2} $”.
Note: $ \arcsin \left( x \right) = {\sin ^{ - 1}}x $ , arcsin is nothing but sine inverse.
$ \sin (x) $ is an odd function that means $ \sin \left( { - x} \right) = - \sin x $ .
Since, we know that the range of sine function is $ \left( { - \dfrac{\pi }{2},\dfrac{\pi }{2}} \right) $ , then according to that the range of arcsin function would be $ \left( { - 1,1} \right) $ as $ \sin \dfrac{\pi }{2} = 1 $ .
Recently Updated Pages
Master Class 8 Social Science: Engaging Questions & Answers for Success

Master Class 8 English: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Master Class 8 Maths: Engaging Questions & Answers for Success

Master Class 8 Science: Engaging Questions & Answers for Success

Master Class 7 English: Engaging Questions & Answers for Success

Trending doubts
What are the factors of 100 class 7 maths CBSE

Which are the Top 10 Largest Countries of the World?

What is BLO What is the full form of BLO class 8 social science CBSE

The value of 6 more than 7 is A 1 B 1 C 13 D 13 class 7 maths CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

