
Divide the polynomial ${{x}^{3}}+4{{x}^{2}}-3x-10$ by $x+1$ and verify your remainder by remainder factor theorem.
Answer
515.1k+ views
Hint: To divide ${{x}^{3}}+4{{x}^{2}}-3x-10$ by $x+1$ , we have to write ${{x}^{3}}+4{{x}^{2}}-3x-10$ as the dividend and $x+1$ as the divisor. Then, we have to divide ${{x}^{3}}$ by x and write the quotient on the top. We have to multiply this quotient with $x+1$ and write the result below the dividend and subtract it from the dividend. We have to perform this operation till we get a remainder. To verify using the remainder theorem, we will equate the divisor to 0 and find the value of x. We have to substitute this value of x in the dividend and check whether the result is equal to the remainder.
Complete step by step answer:
We have to divide the polynomial ${{x}^{3}}+4{{x}^{2}}-3x-10$ by $x+1$ . For this, we will use the long division method. Firstly, we will write ${{x}^{3}}+4{{x}^{2}}-3x-10$ as the dividend and $x+1$ as the divisor.
$x+1\overset{{}}{\overline{\left){{{x}^{3}}+4{{x}^{2}}-3x-10}\right.}}$
Now, we have to divide ${{x}^{3}}$ by x and write the quotient on the top.
\[x+1\overset{\begin{matrix}
{{x}^{2}} & {} & {} & {} & {} & {} \\
\end{matrix}}{\overline{\left){{{x}^{3}}+4{{x}^{2}}-3x-10}\right.}}\]
We have to multiply the quotient with $x+1$ and write the result below the dividend and subtract it from the dividend.
\[x+1\overset{\begin{matrix}
{{x}^{2}} & {} & {} & {} & {} & {} \\
\end{matrix}}{\overline{\left){\begin{align}
& {{x}^{3}}+4{{x}^{2}}-3x-10 \\
& {{x}^{3}}+{{x}^{2}} \\
& \begin{matrix}
- & - \\
\end{matrix} \\
& \_\_\_\_\_\_\_\_\_\_\_\_\_\_ \\
& \begin{matrix}
{} & 3{{x}^{2}}-3x-10 \\
\end{matrix} \\
\end{align}}\right.}}\]
Similarly, we have to continue till we get a remainder.
\[x+1\overset{{{x}^{2}}+3x-6}{\overline{\left){\begin{align}
& {{x}^{3}}+4{{x}^{2}}-3x-10 \\
& {{x}^{3}}+{{x}^{2}} \\
& \begin{matrix}
- & - \\
\end{matrix} \\
& \_\_\_\_\_\_\_\_\_\_\_\_\_\_ \\
& \begin{matrix}
{} & 3{{x}^{2}}-3x-10 \\
\end{matrix} \\
& \begin{matrix}
{} & 3{{x}^{2}}+3x \\
\end{matrix} \\
& \begin{matrix}
{} & - & - \\
\end{matrix} \\
& \_\_\_\_\_\_\_\_\_\_\_\_\_\_ \\
& \begin{matrix}
{} & {} & -6x-10 \\
\end{matrix} \\
& \begin{matrix}
{} & {} & -6x \\
\end{matrix}-6 \\
& \begin{matrix}
{} & {} & + & + \\
\end{matrix} \\
& \_\_\_\_\_\_\_\_\_\_\_\_\_ \\
& \begin{matrix}
{} & {} & {} & -4 \\
\end{matrix} \\
\end{align}}\right.}}\]
Therefore, the quotient when ${{x}^{3}}+4{{x}^{2}}-3x-10$ is divided by $x+1$ is \[{{x}^{2}}+3x-6\] and the remainder is -4.
We have to verify the remainder using the remainder factor theorem. We know that the remainder theorem states that a polynomial p(x) can be divided g(x) only if $p\left( a \right)=0$ , where a is the root of the divisor g(x). Let us consider $p\left( x \right)={{x}^{3}}+4{{x}^{2}}-3x-10$ and $g\left( x \right)=x+1$ . Let us find the root of g(x) by equating it to 0.
$\begin{align}
& \Rightarrow x+1=0 \\
& \Rightarrow x=-1 \\
\end{align}$
Let us substitute the above value of x in the polynomial p(x).
$\begin{align}
& \Rightarrow p\left( -1 \right)={{\left( -1 \right)}^{3}}+4{{\left( -1 \right)}^{2}}-3\left( -1 \right)-10 \\
& \Rightarrow p\left( -1 \right)=-1+4+3-10 \\
& \Rightarrow p\left( -1 \right)=-4 \\
\end{align}$
Therefore, the remainder is $p\left( -1 \right)=-4$ .
Hence, verified.
Note: Students must be through with the long division method and the remainder theorem. They must note that before writing the dividend and divisor, they have to arrange the terms of these in the decreasing order of the powers of the exponents.
Complete step by step answer:
We have to divide the polynomial ${{x}^{3}}+4{{x}^{2}}-3x-10$ by $x+1$ . For this, we will use the long division method. Firstly, we will write ${{x}^{3}}+4{{x}^{2}}-3x-10$ as the dividend and $x+1$ as the divisor.
$x+1\overset{{}}{\overline{\left){{{x}^{3}}+4{{x}^{2}}-3x-10}\right.}}$
Now, we have to divide ${{x}^{3}}$ by x and write the quotient on the top.
\[x+1\overset{\begin{matrix}
{{x}^{2}} & {} & {} & {} & {} & {} \\
\end{matrix}}{\overline{\left){{{x}^{3}}+4{{x}^{2}}-3x-10}\right.}}\]
We have to multiply the quotient with $x+1$ and write the result below the dividend and subtract it from the dividend.
\[x+1\overset{\begin{matrix}
{{x}^{2}} & {} & {} & {} & {} & {} \\
\end{matrix}}{\overline{\left){\begin{align}
& {{x}^{3}}+4{{x}^{2}}-3x-10 \\
& {{x}^{3}}+{{x}^{2}} \\
& \begin{matrix}
- & - \\
\end{matrix} \\
& \_\_\_\_\_\_\_\_\_\_\_\_\_\_ \\
& \begin{matrix}
{} & 3{{x}^{2}}-3x-10 \\
\end{matrix} \\
\end{align}}\right.}}\]
Similarly, we have to continue till we get a remainder.
\[x+1\overset{{{x}^{2}}+3x-6}{\overline{\left){\begin{align}
& {{x}^{3}}+4{{x}^{2}}-3x-10 \\
& {{x}^{3}}+{{x}^{2}} \\
& \begin{matrix}
- & - \\
\end{matrix} \\
& \_\_\_\_\_\_\_\_\_\_\_\_\_\_ \\
& \begin{matrix}
{} & 3{{x}^{2}}-3x-10 \\
\end{matrix} \\
& \begin{matrix}
{} & 3{{x}^{2}}+3x \\
\end{matrix} \\
& \begin{matrix}
{} & - & - \\
\end{matrix} \\
& \_\_\_\_\_\_\_\_\_\_\_\_\_\_ \\
& \begin{matrix}
{} & {} & -6x-10 \\
\end{matrix} \\
& \begin{matrix}
{} & {} & -6x \\
\end{matrix}-6 \\
& \begin{matrix}
{} & {} & + & + \\
\end{matrix} \\
& \_\_\_\_\_\_\_\_\_\_\_\_\_ \\
& \begin{matrix}
{} & {} & {} & -4 \\
\end{matrix} \\
\end{align}}\right.}}\]
Therefore, the quotient when ${{x}^{3}}+4{{x}^{2}}-3x-10$ is divided by $x+1$ is \[{{x}^{2}}+3x-6\] and the remainder is -4.
We have to verify the remainder using the remainder factor theorem. We know that the remainder theorem states that a polynomial p(x) can be divided g(x) only if $p\left( a \right)=0$ , where a is the root of the divisor g(x). Let us consider $p\left( x \right)={{x}^{3}}+4{{x}^{2}}-3x-10$ and $g\left( x \right)=x+1$ . Let us find the root of g(x) by equating it to 0.
$\begin{align}
& \Rightarrow x+1=0 \\
& \Rightarrow x=-1 \\
\end{align}$
Let us substitute the above value of x in the polynomial p(x).
$\begin{align}
& \Rightarrow p\left( -1 \right)={{\left( -1 \right)}^{3}}+4{{\left( -1 \right)}^{2}}-3\left( -1 \right)-10 \\
& \Rightarrow p\left( -1 \right)=-1+4+3-10 \\
& \Rightarrow p\left( -1 \right)=-4 \\
\end{align}$
Therefore, the remainder is $p\left( -1 \right)=-4$ .
Hence, verified.
Note: Students must be through with the long division method and the remainder theorem. They must note that before writing the dividend and divisor, they have to arrange the terms of these in the decreasing order of the powers of the exponents.
Recently Updated Pages
Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Master Class 9 Social Science: Engaging Questions & Answers for Success

Master Class 9 English: Engaging Questions & Answers for Success

Master Class 9 Maths: Engaging Questions & Answers for Success

Master Class 9 Science: Engaging Questions & Answers for Success

Class 9 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
Difference Between Plant Cell and Animal Cell

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Who is eligible for RTE class 9 social science CBSE

Which places in India experience sunrise first and class 9 social science CBSE

What is pollution? How many types of pollution? Define it

Name 10 Living and Non living things class 9 biology CBSE

