
Divide the polynomial \[{\rm{3}}{{\rm{x}}^{\rm{4}}} - {\rm{4}}{{\rm{x}}^{\rm{3}}} - {\rm{3x}} - {\rm{1}}\] by \[x - 1\].
Answer
564.9k+ views
Hint: The division questions are solved by dividing only the first variable of dividend by the first variable of divisor, subtracting the remaining part, then again dividing the first part of the remaining dividend by the first part of divisor, and repeating this process or methodology over and over again till we reach a point where the remainder is a constant, which includes zero. We can also verify the relation by putting in the values of dividend, divisor, quotient and remainder into the Euclid’s division lemma and checking the two sides of equality.
Formula Used:
We are going to use the Euclid’s division lemma to verify the relation that we obtain, which is:
dividend \[ = \] divisor\[ \times \]quotient \[ + \] remainder
or, in mathematical form it is represented as:
\[a = bq + r \;\;\;\;\;\;\;\;\;\] \[0 \le r < b\]
where \[a\] is the dividend, \[b\] is the divisor, \[q\] is the quotient and \[r\] is the remainder.
Complete step by step answer:
First, we divide \[3{x^4}\] (first term of the dividend) by \[x\] (first term of the divisor)
\[\dfrac{{3{x^4}}}{x} = 3{x^3}\]
So, that means that the first term of the quotient is \[3{x^3}\].
\[x - 1\mathop{\left){\vphantom{1\begin{array}{l}3{x^4} - 4{x^3} - 3x - 1\\3{x^4} - 3{x^3}\\\dfrac{{ - {\rm{ }} + {\rm{ }}}}{{0 - {x^3}}}\end{array}}}\right.
\!\!\!\!\overline{\,\,\,\vphantom 1{\begin{array}{l}3{x^4} - 4{x^3} - 3x - 1\\3{x^4} - 3{x^3}\\\dfrac{{ - {\rm{ }} + {\rm{ }}}}{{0 - {x^3}}}\end{array}}}}
\limits^{\displaystyle\,\,\, {3{x^3}}}\]
Now, we divide the first term of remaining divisor by \[x\]
\[\dfrac{{ - {x^3}}}{x} = - {x^2}\]
\[x - 1\mathop{\left){\vphantom{1\begin{array}{l}3{x^4} - 4{x^3} - 3x - 1\\3{x^4} - 3{x^3}\\\dfrac{{ - {\rm{ }} + {\rm{ }}}}{\begin{array}{l}0 - {x^3}\\{\rm{ }}{x^3} - 3x\\{\rm{ }}{x^3} + {x^2}\\\dfrac{{ - {\rm{ }} - {\rm{ }}}}{{0 - {x^2} - 3x - 1}}{\rm{ }}\end{array}}\end{array}}}\right.
\!\!\!\!\overline{\,\,\,\vphantom 1{\begin{array}{l}3{x^4} - 4{x^3} - 3x - 1\\3{x^4} - 3{x^3}\\\dfrac{{ - {\rm{ }} + {\rm{ }}}}{\begin{array}{l}0 - {x^3}\\{\rm{ }}{x^3} - 3x\\{\rm{ }}{x^3} + {x^2}\\\dfrac{{ - {\rm{ }} - {\rm{ }}}}{{0 - {x^2} - 3x - 1}}{\rm{ }}\end{array}}\end{array}}}}
\limits^{\displaystyle\,\,\, {3{x^3} - {x^2}}}\]
Now, we divide \[ - {x^2}\] by \[x\]
\[\dfrac{{ - {x^2}}}{x} = - x\]
\[x - 1\mathop{\left){\vphantom{1\begin{array}{l}3{x^4} - 4{x^3} - 3x - 1\\3{x^4} - 3{x^3}\\\dfrac{{ - {\rm{ }} + {\rm{ }}}}{\begin{array}{l}0 - {x^3}\\{\rm{ }}{x^3} - 3x\\{\rm{ }}{x^3} + {x^2}\\\dfrac{{ - {\rm{ }} - {\rm{ }}}}{\begin{array}{l}0 - {x^2} - 3x - 1\\{\rm{ }} - {x^2} + x\\\dfrac{{ + {\rm{ }} - }}{{0 - 4x - 1}}\end{array}}{\rm{ }}\end{array}}\end{array}}}\right.
\!\!\!\!\overline{\,\,\,\vphantom 1{\begin{array}{l}3{x^4} - 4{x^3} - 3x - 1\\3{x^4} - 3{x^3}\\\dfrac{{ - {\rm{ }} + {\rm{ }}}}{\begin{array}{l}0 - {x^3}\\{\rm{ }}{x^3} - 3x\\{\rm{ }}{x^3} + {x^2}\\\dfrac{{ - {\rm{ }} - {\rm{ }}}}{\begin{array}{l}0 - {x^2} - 3x - 1\\{\rm{ }} - {x^2} + x\\\dfrac{{ + {\rm{ }} - }}{{0 - 4x - 1}}\end{array}}{\rm{ }}\end{array}}\end{array}}}}
\limits^{\displaystyle\,\,\, {3{x^3} - {x^2} - x}}\]
Finally, we divide \[ - 4x\] by \[x\]
\[\dfrac{{ - 4x}}{x} = - 4\]
\[x - 1\mathop{\left){\vphantom{1\begin{array}{l}3{x^4} - 4{x^3} - 3x - 1\\3{x^4} - 3{x^3}\\\dfrac{{ - {\rm{ }} + {\rm{ }}}}{\begin{array}{l}0 - {x^3}\\{\rm{ }}{x^3} - 3x\\{\rm{ }}{x^3} + {x^2}\\\dfrac{{ - {\rm{ }} - {\rm{ }}}}{\begin{array}{l}0 - {x^2} - 3x - 1\\{\rm{ }} - {x^2} + x\\\dfrac{{ + {\rm{ }} - }}{\begin{array}{l}0 - 4x - 1\\{\rm{ }} - 4x + 4\\{\rm{ }}\dfrac{{{\rm{ }} + {\rm{ }} - }}{{{\rm{ }}\dfrac{{{\rm{ }} - 5{\rm{ }}}}{{}}}}\end{array}}\end{array}}{\rm{ }}\end{array}}\end{array}}}\right.
\!\!\!\!\overline{\,\,\,\vphantom 1{\begin{array}{l}3{x^4} - 4{x^3} - 3x - 1\\3{x^4} - 3{x^3}\\\dfrac{{ - {\rm{ }} + {\rm{ }}}}{\begin{array}{l}0 - {x^3}\\{\rm{ }}{x^3} - 3x\\{\rm{ }}{x^3} + {x^2}\\\dfrac{{ - {\rm{ }} - {\rm{ }}}}{\begin{array}{l}0 - {x^2} - 3x - 1\\{\rm{ }} - {x^2} + x\\\dfrac{{ + {\rm{ }} - }}{\begin{array}{l}0 - 4x - 1\\{\rm{ }} - 4x + 4\\{\rm{ }}\dfrac{{{\rm{ }} + {\rm{ }} - }}{{{\rm{ }}\dfrac{{{\rm{ }} - 5{\rm{ }}}}{{}}}}\end{array}}\end{array}}{\rm{ }}\end{array}}\end{array}}}}
\limits^{\displaystyle\,\,\, {3{x^3} - {x^2} - x - 4}}\]
Thus, on dividing \[{\rm{3}}{{\rm{x}}^{\rm{4}}} - {\rm{4}}{{\rm{x}}^{\rm{3}}} - {\rm{3x}} - {\rm{1}}\] by \[x - 1\], we get \[3{x^3} - {x^2} - x - 4\] as quotient and \[5\] as the remainder.
Note: So, in this question we saw that solving this type of question is very easy. All one needs to know is how to methodically approach the question, follow the steps religiously, checking each step twice (in case one misses something, as going back to look for the error after the final step has been reached is very time consuming and exhilarating), verifying the answer with the Euclid’s division lemma by putting in the values of dividend, divisor, quotient and remainder into it and comparing the two sides of the equality.
Formula Used:
We are going to use the Euclid’s division lemma to verify the relation that we obtain, which is:
dividend \[ = \] divisor\[ \times \]quotient \[ + \] remainder
or, in mathematical form it is represented as:
\[a = bq + r \;\;\;\;\;\;\;\;\;\] \[0 \le r < b\]
where \[a\] is the dividend, \[b\] is the divisor, \[q\] is the quotient and \[r\] is the remainder.
Complete step by step answer:
First, we divide \[3{x^4}\] (first term of the dividend) by \[x\] (first term of the divisor)
\[\dfrac{{3{x^4}}}{x} = 3{x^3}\]
So, that means that the first term of the quotient is \[3{x^3}\].
\[x - 1\mathop{\left){\vphantom{1\begin{array}{l}3{x^4} - 4{x^3} - 3x - 1\\3{x^4} - 3{x^3}\\\dfrac{{ - {\rm{ }} + {\rm{ }}}}{{0 - {x^3}}}\end{array}}}\right.
\!\!\!\!\overline{\,\,\,\vphantom 1{\begin{array}{l}3{x^4} - 4{x^3} - 3x - 1\\3{x^4} - 3{x^3}\\\dfrac{{ - {\rm{ }} + {\rm{ }}}}{{0 - {x^3}}}\end{array}}}}
\limits^{\displaystyle\,\,\, {3{x^3}}}\]
Now, we divide the first term of remaining divisor by \[x\]
\[\dfrac{{ - {x^3}}}{x} = - {x^2}\]
\[x - 1\mathop{\left){\vphantom{1\begin{array}{l}3{x^4} - 4{x^3} - 3x - 1\\3{x^4} - 3{x^3}\\\dfrac{{ - {\rm{ }} + {\rm{ }}}}{\begin{array}{l}0 - {x^3}\\{\rm{ }}{x^3} - 3x\\{\rm{ }}{x^3} + {x^2}\\\dfrac{{ - {\rm{ }} - {\rm{ }}}}{{0 - {x^2} - 3x - 1}}{\rm{ }}\end{array}}\end{array}}}\right.
\!\!\!\!\overline{\,\,\,\vphantom 1{\begin{array}{l}3{x^4} - 4{x^3} - 3x - 1\\3{x^4} - 3{x^3}\\\dfrac{{ - {\rm{ }} + {\rm{ }}}}{\begin{array}{l}0 - {x^3}\\{\rm{ }}{x^3} - 3x\\{\rm{ }}{x^3} + {x^2}\\\dfrac{{ - {\rm{ }} - {\rm{ }}}}{{0 - {x^2} - 3x - 1}}{\rm{ }}\end{array}}\end{array}}}}
\limits^{\displaystyle\,\,\, {3{x^3} - {x^2}}}\]
Now, we divide \[ - {x^2}\] by \[x\]
\[\dfrac{{ - {x^2}}}{x} = - x\]
\[x - 1\mathop{\left){\vphantom{1\begin{array}{l}3{x^4} - 4{x^3} - 3x - 1\\3{x^4} - 3{x^3}\\\dfrac{{ - {\rm{ }} + {\rm{ }}}}{\begin{array}{l}0 - {x^3}\\{\rm{ }}{x^3} - 3x\\{\rm{ }}{x^3} + {x^2}\\\dfrac{{ - {\rm{ }} - {\rm{ }}}}{\begin{array}{l}0 - {x^2} - 3x - 1\\{\rm{ }} - {x^2} + x\\\dfrac{{ + {\rm{ }} - }}{{0 - 4x - 1}}\end{array}}{\rm{ }}\end{array}}\end{array}}}\right.
\!\!\!\!\overline{\,\,\,\vphantom 1{\begin{array}{l}3{x^4} - 4{x^3} - 3x - 1\\3{x^4} - 3{x^3}\\\dfrac{{ - {\rm{ }} + {\rm{ }}}}{\begin{array}{l}0 - {x^3}\\{\rm{ }}{x^3} - 3x\\{\rm{ }}{x^3} + {x^2}\\\dfrac{{ - {\rm{ }} - {\rm{ }}}}{\begin{array}{l}0 - {x^2} - 3x - 1\\{\rm{ }} - {x^2} + x\\\dfrac{{ + {\rm{ }} - }}{{0 - 4x - 1}}\end{array}}{\rm{ }}\end{array}}\end{array}}}}
\limits^{\displaystyle\,\,\, {3{x^3} - {x^2} - x}}\]
Finally, we divide \[ - 4x\] by \[x\]
\[\dfrac{{ - 4x}}{x} = - 4\]
\[x - 1\mathop{\left){\vphantom{1\begin{array}{l}3{x^4} - 4{x^3} - 3x - 1\\3{x^4} - 3{x^3}\\\dfrac{{ - {\rm{ }} + {\rm{ }}}}{\begin{array}{l}0 - {x^3}\\{\rm{ }}{x^3} - 3x\\{\rm{ }}{x^3} + {x^2}\\\dfrac{{ - {\rm{ }} - {\rm{ }}}}{\begin{array}{l}0 - {x^2} - 3x - 1\\{\rm{ }} - {x^2} + x\\\dfrac{{ + {\rm{ }} - }}{\begin{array}{l}0 - 4x - 1\\{\rm{ }} - 4x + 4\\{\rm{ }}\dfrac{{{\rm{ }} + {\rm{ }} - }}{{{\rm{ }}\dfrac{{{\rm{ }} - 5{\rm{ }}}}{{}}}}\end{array}}\end{array}}{\rm{ }}\end{array}}\end{array}}}\right.
\!\!\!\!\overline{\,\,\,\vphantom 1{\begin{array}{l}3{x^4} - 4{x^3} - 3x - 1\\3{x^4} - 3{x^3}\\\dfrac{{ - {\rm{ }} + {\rm{ }}}}{\begin{array}{l}0 - {x^3}\\{\rm{ }}{x^3} - 3x\\{\rm{ }}{x^3} + {x^2}\\\dfrac{{ - {\rm{ }} - {\rm{ }}}}{\begin{array}{l}0 - {x^2} - 3x - 1\\{\rm{ }} - {x^2} + x\\\dfrac{{ + {\rm{ }} - }}{\begin{array}{l}0 - 4x - 1\\{\rm{ }} - 4x + 4\\{\rm{ }}\dfrac{{{\rm{ }} + {\rm{ }} - }}{{{\rm{ }}\dfrac{{{\rm{ }} - 5{\rm{ }}}}{{}}}}\end{array}}\end{array}}{\rm{ }}\end{array}}\end{array}}}}
\limits^{\displaystyle\,\,\, {3{x^3} - {x^2} - x - 4}}\]
Thus, on dividing \[{\rm{3}}{{\rm{x}}^{\rm{4}}} - {\rm{4}}{{\rm{x}}^{\rm{3}}} - {\rm{3x}} - {\rm{1}}\] by \[x - 1\], we get \[3{x^3} - {x^2} - x - 4\] as quotient and \[5\] as the remainder.
Note: So, in this question we saw that solving this type of question is very easy. All one needs to know is how to methodically approach the question, follow the steps religiously, checking each step twice (in case one misses something, as going back to look for the error after the final step has been reached is very time consuming and exhilarating), verifying the answer with the Euclid’s division lemma by putting in the values of dividend, divisor, quotient and remainder into it and comparing the two sides of the equality.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
Difference Between Plant Cell and Animal Cell

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Which places in India experience sunrise first and class 9 social science CBSE

Name 10 Living and Non living things class 9 biology CBSE

What is the full form of pH?

Write the 6 fundamental rights of India and explain in detail


