
How do you divide the polynomial \[\dfrac{2{{x}^{4}}+4{{x}^{3}}-5{{x}^{2}}+3x-2}{{{x}^{2}}+2x-3}\]?
Answer
451.8k+ views
Hint: In this problem, we have to divide the given equation and the factor. We can use the polynomial long division method to divide the given problem by dividing the highest order term in the dividend to the highest order term in the divisor step by step until we get the remainder.
Complete step-by-step solution:
We know that the given fraction is,
\[\dfrac{2{{x}^{4}}+4{{x}^{3}}-5{{x}^{2}}+3x-2}{{{x}^{2}}+2x-3}\]
Now we can set up the polynomials to be divided in long division, we get
\[{{x}^{2}}+2x-3\overset{{}}{\overline{\left){2{{x}^{4}}+4{{x}^{3}}-5{{x}^{2}}+3x-2}\right.}}\]
Now we can divide the highest order term in the dividend \[2{{x}^{4}}\] by the highest order term in the divisor \[{{x}^{2}}\], we get
\[{{x}^{2}}+2x-3\overset{2{{x}^{2}}}{\overline{\left){2{{x}^{4}}+4{{x}^{3}}-5{{x}^{2}}+3x-2}\right.}}\]
We can now multiply the quotient term to the divisor, we get
\[{{x}^{2}}+2x-3\overset{2{{x}^{2}}}{\overline{\left){\begin{align}
& 2{{x}^{4}}+4{{x}^{3}}-5{{x}^{2}}+3x-2 \\
& 2{{x}^{4}}+4{{x}^{3}}-6{{x}^{2}} \\
\end{align}}\right.}}\]
We know that the expression is to be subtracted in the dividend, so we can change the sign in \[2{{x}^{4}}+4{{x}^{3}}-6{{x}^{2}}\], we get
\[\begin{align}
& {{x}^{2}}+2x-3\overset{2{{x}^{2}}}{\overline{\left){\begin{align}
& 2{{x}^{4}}+4{{x}^{3}}-5{{x}^{2}}+3x-2 \\
& \underline{-2{{x}^{4}}-4{{x}^{3}}+6{{x}^{2}}} \\
\end{align}}\right.}} \\
&\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\ {{x}^{2}} \\
\end{align}\]
Now we can bring down the next two term from the dividend to the current dividend,
\[\begin{align}
& {{x}^{2}}+2x-3\overset{2{{x}^{2}}}{\overline{\left){\begin{align}
& 2{{x}^{4}}+4{{x}^{3}}-5{{x}^{2}}+3x-2 \\
& \underline{-2{{x}^{4}}-4{{x}^{3}}+6{{x}^{2}}} \\
\end{align}}\right.}} \\
& \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\ {{x}^{2}}+3x-2 \\
\end{align}\]
Now we should divide the highest order term in the dividend by the divisor x, we get
\[\begin{align}
& {{x}^{2}}+2x-3\overset{2{{x}^{2}}+1}{\overline{\left){\begin{align}
& 2{{x}^{4}}+4{{x}^{3}}-5{{x}^{2}}+3x-2 \\
& \underline{-2{{x}^{4}}-4{{x}^{3}}+6{{x}^{2}}} \\
\end{align}}\right.}} \\
&\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\ {{x}^{2}}+3x-2 \\
& \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\ {{x}^{2}}+2x-3 \\
\end{align}\]
We can now multiply the new quotient to the divisor, then subtract those expression to get the next dividend value, we get
\[\begin{align}
& {{x}^{2}}+2x-3\overset{2{{x}^{2}}+1}{\overline{\left){\begin{align}
& 2{{x}^{4}}+4{{x}^{3}}-5{{x}^{2}}+3x-2 \\
& \underline{-2{{x}^{4}}-4{{x}^{3}}+6{{x}^{2}}} \\
\end{align}}\right.}} \\
&\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; {{x}^{2}}+3x-2 \\
&\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; \underline{-{{x}^{2}}-2x+3} \\
&\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; x+1 \\
\end{align}\]
We know that dividend is equal to quotient plus the remainder over the divisor.
Therefore, the final answer is \[2{{x}^{2}}+1+\dfrac{x+1}{{{x}^{2}}+2x-3}\].
Note: Students make mistakes while dividing the number to the divisor which we will place it in the quotient. We should always concentrate on each and every step while bringing the terms from the given equation step by step. We should also remember that the formula for the final result is the dividend is equal to quotient plus remainder over the divisor.
Complete step-by-step solution:
We know that the given fraction is,
\[\dfrac{2{{x}^{4}}+4{{x}^{3}}-5{{x}^{2}}+3x-2}{{{x}^{2}}+2x-3}\]
Now we can set up the polynomials to be divided in long division, we get
\[{{x}^{2}}+2x-3\overset{{}}{\overline{\left){2{{x}^{4}}+4{{x}^{3}}-5{{x}^{2}}+3x-2}\right.}}\]
Now we can divide the highest order term in the dividend \[2{{x}^{4}}\] by the highest order term in the divisor \[{{x}^{2}}\], we get
\[{{x}^{2}}+2x-3\overset{2{{x}^{2}}}{\overline{\left){2{{x}^{4}}+4{{x}^{3}}-5{{x}^{2}}+3x-2}\right.}}\]
We can now multiply the quotient term to the divisor, we get
\[{{x}^{2}}+2x-3\overset{2{{x}^{2}}}{\overline{\left){\begin{align}
& 2{{x}^{4}}+4{{x}^{3}}-5{{x}^{2}}+3x-2 \\
& 2{{x}^{4}}+4{{x}^{3}}-6{{x}^{2}} \\
\end{align}}\right.}}\]
We know that the expression is to be subtracted in the dividend, so we can change the sign in \[2{{x}^{4}}+4{{x}^{3}}-6{{x}^{2}}\], we get
\[\begin{align}
& {{x}^{2}}+2x-3\overset{2{{x}^{2}}}{\overline{\left){\begin{align}
& 2{{x}^{4}}+4{{x}^{3}}-5{{x}^{2}}+3x-2 \\
& \underline{-2{{x}^{4}}-4{{x}^{3}}+6{{x}^{2}}} \\
\end{align}}\right.}} \\
&\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\ {{x}^{2}} \\
\end{align}\]
Now we can bring down the next two term from the dividend to the current dividend,
\[\begin{align}
& {{x}^{2}}+2x-3\overset{2{{x}^{2}}}{\overline{\left){\begin{align}
& 2{{x}^{4}}+4{{x}^{3}}-5{{x}^{2}}+3x-2 \\
& \underline{-2{{x}^{4}}-4{{x}^{3}}+6{{x}^{2}}} \\
\end{align}}\right.}} \\
& \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\ {{x}^{2}}+3x-2 \\
\end{align}\]
Now we should divide the highest order term in the dividend by the divisor x, we get
\[\begin{align}
& {{x}^{2}}+2x-3\overset{2{{x}^{2}}+1}{\overline{\left){\begin{align}
& 2{{x}^{4}}+4{{x}^{3}}-5{{x}^{2}}+3x-2 \\
& \underline{-2{{x}^{4}}-4{{x}^{3}}+6{{x}^{2}}} \\
\end{align}}\right.}} \\
&\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\ {{x}^{2}}+3x-2 \\
& \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\ {{x}^{2}}+2x-3 \\
\end{align}\]
We can now multiply the new quotient to the divisor, then subtract those expression to get the next dividend value, we get
\[\begin{align}
& {{x}^{2}}+2x-3\overset{2{{x}^{2}}+1}{\overline{\left){\begin{align}
& 2{{x}^{4}}+4{{x}^{3}}-5{{x}^{2}}+3x-2 \\
& \underline{-2{{x}^{4}}-4{{x}^{3}}+6{{x}^{2}}} \\
\end{align}}\right.}} \\
&\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; {{x}^{2}}+3x-2 \\
&\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; \underline{-{{x}^{2}}-2x+3} \\
&\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; x+1 \\
\end{align}\]
We know that dividend is equal to quotient plus the remainder over the divisor.
Therefore, the final answer is \[2{{x}^{2}}+1+\dfrac{x+1}{{{x}^{2}}+2x-3}\].
Note: Students make mistakes while dividing the number to the divisor which we will place it in the quotient. We should always concentrate on each and every step while bringing the terms from the given equation step by step. We should also remember that the formula for the final result is the dividend is equal to quotient plus remainder over the divisor.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Trending doubts
A number is chosen from 1 to 20 Find the probabili-class-10-maths-CBSE

Distinguish between the reserved forests and protected class 10 biology CBSE

A boat goes 24 km upstream and 28 km downstream in class 10 maths CBSE

Leap year has days A 365 B 366 C 367 D 368 class 10 maths CBSE

What are the public facilities provided by the government? Also explain each facility

Difference between mass and weight class 10 physics CBSE
