
Divide the given polynomial: $7{x^4} + 4{x^2} + 3x - 5$ by $2{x^2} + 3x - 2$.
Answer
579.6k+ views
Hint: In this particular question use the concept that if we divide fourth-order polynomial by second-order polynomial the quotient will be a second-order polynomial so assume any general second-order polynomial be the quotient (say, $p{x^2} + q x + r$) where p, q, and r are the constant real parameters, and there will be a remainder also say (ax + b), where a and b are constant real parameters so use these concepts to reach the solution of the question.
Complete step-by-step solution:
Given polynomial
$f\left( x \right) = 7{x^4} + 4{x^2} + 3x - 5$
Now when this polynomial is divided by another polynomial, $2{x^2} + 3x - 2$, the quotient will always be a second order polynomial.
Let, the quotient be $p{x^2} + q x + r$, where p, q, and r are constant real parameters and the remainder be (ax + b), where a and b are constant real parameters
$ \Rightarrow \dfrac{{f\left( x \right)}}{D} = Q\dfrac{R}{D}$
Where, Q = quotient, R = remainder, and D = divisor.
Now substitute the value of f (x) we have,
$ \Rightarrow \dfrac{{7{x^4} + 4{x^2} + 3x - 5}}{{2{x^2} + 3x - 2}} = \left( {p{x^2} + qx + r} \right)\dfrac{{\left( {ax + b} \right)}}{{2{x^2} + 3x - 2}}$
$ \Rightarrow 7{x^4} + 4{x^2} + 3x - 5 = \left( {p{x^2} + qx + r} \right)\left( {2{x^2} + 3x - 2} \right) + \left( {ax + b} \right)$
Now simplify it we have,
$ \Rightarrow 7{x^4} + 4{x^2} + 3x - 5 = \left( {2p{x^4} + \left( {3p + 2q} \right){x^3} + \left( { - 2p + 3q + 2r} \right){x^2} + \left( { - 2q + 3r + a} \right)x - \left( {2r - b} \right)} \right)$
Now on comparing we have,
\[ \Rightarrow 2p = 7\]..................... (1)
\[ \Rightarrow 3p + 2q = 0\]................ (2)
\[ \Rightarrow - 2p + 3q + 2r = 4\]................ (3)
\[ \Rightarrow - 2q + 3r + a = 3\]............. (4)
\[ \Rightarrow 2r - b = 5\]............... (5)
So from equation (1) we have,
$ \Rightarrow p = \dfrac{7}{2}$
Substitute this value in equation (2) we have,
\[ \Rightarrow 3\left( {\dfrac{7}{2}} \right) + 2q = 0\]
\[ \Rightarrow 2q = - 3\left( {\dfrac{7}{2}} \right)\]
\[ \Rightarrow q = \left( { - \dfrac{{21}}{4}} \right)\]
From equation (3) we have,
\[ \Rightarrow - 2p + 3q + 2r = 4\]
\[ \Rightarrow - 2\left( {\dfrac{7}{2}} \right) + 3\left( {\dfrac{{ - 21}}{4}} \right) + 2r = 4\]
\[ \Rightarrow 2r = 4 + 7 + \left( {\dfrac{{63}}{4}} \right) = \dfrac{{107}}{4}\]
\[ \Rightarrow r = \dfrac{{107}}{8}\]
From equation (4) we have,
\[ \Rightarrow - 2q + 3r + a = 3\]
\[ \Rightarrow - 2\left( {\dfrac{{ - 21}}{4}} \right) + 3\left( {\dfrac{{107}}{8}} \right) + a = 3\]
\[ \Rightarrow a = 3 - \left( {\dfrac{{21}}{2}} \right) - \left( {\dfrac{{321}}{8}} \right) = \dfrac{{ - 381}}{8}\]
From equation (5) we have,
\[ \Rightarrow 2r - b = 5\]
\[ \Rightarrow 2\left( {\dfrac{{107}}{8}} \right) - b = 5\]
\[ \Rightarrow \left( {\dfrac{{107}}{4}} \right) - 5 = b\]
\[ \Rightarrow b = \dfrac{{87}}{4}\]
So the quotient polynomial is
$ \Rightarrow p{x^2} + qx + r = \dfrac{7}{2}{x^2} - \dfrac{{21}}{4}x + \dfrac{{107}}{8}$
And the remainder polynomial is
$ \Rightarrow ax + b = \dfrac{{ - 381}}{8}x + \dfrac{{87}}{4}$
\[ \Rightarrow \dfrac{{7{x^4} + 4{x^2} + 3x - 5}}{{2{x^2} + 3x - 2}} = \left( {\dfrac{7}{2}{x^2} - \dfrac{{21}}{4}x + \dfrac{{107}}{8}} \right)\dfrac{{\left( {\dfrac{{ - 381}}{8}x + \dfrac{{87}}{4}} \right)}}{{2{x^2} + 3x - 2}}\]
So this is the required answer.
Note: Whenever we face such types of questions the key concept we have to remember is that when we multiply the divisor polynomial by the quotient polynomial and in this add the remainder polynomial we will get the resultant polynomial, so on comparing we get some equation with unknown parameters, simply solve these equations we will get the required answer.
Complete step-by-step solution:
Given polynomial
$f\left( x \right) = 7{x^4} + 4{x^2} + 3x - 5$
Now when this polynomial is divided by another polynomial, $2{x^2} + 3x - 2$, the quotient will always be a second order polynomial.
Let, the quotient be $p{x^2} + q x + r$, where p, q, and r are constant real parameters and the remainder be (ax + b), where a and b are constant real parameters
$ \Rightarrow \dfrac{{f\left( x \right)}}{D} = Q\dfrac{R}{D}$
Where, Q = quotient, R = remainder, and D = divisor.
Now substitute the value of f (x) we have,
$ \Rightarrow \dfrac{{7{x^4} + 4{x^2} + 3x - 5}}{{2{x^2} + 3x - 2}} = \left( {p{x^2} + qx + r} \right)\dfrac{{\left( {ax + b} \right)}}{{2{x^2} + 3x - 2}}$
$ \Rightarrow 7{x^4} + 4{x^2} + 3x - 5 = \left( {p{x^2} + qx + r} \right)\left( {2{x^2} + 3x - 2} \right) + \left( {ax + b} \right)$
Now simplify it we have,
$ \Rightarrow 7{x^4} + 4{x^2} + 3x - 5 = \left( {2p{x^4} + \left( {3p + 2q} \right){x^3} + \left( { - 2p + 3q + 2r} \right){x^2} + \left( { - 2q + 3r + a} \right)x - \left( {2r - b} \right)} \right)$
Now on comparing we have,
\[ \Rightarrow 2p = 7\]..................... (1)
\[ \Rightarrow 3p + 2q = 0\]................ (2)
\[ \Rightarrow - 2p + 3q + 2r = 4\]................ (3)
\[ \Rightarrow - 2q + 3r + a = 3\]............. (4)
\[ \Rightarrow 2r - b = 5\]............... (5)
So from equation (1) we have,
$ \Rightarrow p = \dfrac{7}{2}$
Substitute this value in equation (2) we have,
\[ \Rightarrow 3\left( {\dfrac{7}{2}} \right) + 2q = 0\]
\[ \Rightarrow 2q = - 3\left( {\dfrac{7}{2}} \right)\]
\[ \Rightarrow q = \left( { - \dfrac{{21}}{4}} \right)\]
From equation (3) we have,
\[ \Rightarrow - 2p + 3q + 2r = 4\]
\[ \Rightarrow - 2\left( {\dfrac{7}{2}} \right) + 3\left( {\dfrac{{ - 21}}{4}} \right) + 2r = 4\]
\[ \Rightarrow 2r = 4 + 7 + \left( {\dfrac{{63}}{4}} \right) = \dfrac{{107}}{4}\]
\[ \Rightarrow r = \dfrac{{107}}{8}\]
From equation (4) we have,
\[ \Rightarrow - 2q + 3r + a = 3\]
\[ \Rightarrow - 2\left( {\dfrac{{ - 21}}{4}} \right) + 3\left( {\dfrac{{107}}{8}} \right) + a = 3\]
\[ \Rightarrow a = 3 - \left( {\dfrac{{21}}{2}} \right) - \left( {\dfrac{{321}}{8}} \right) = \dfrac{{ - 381}}{8}\]
From equation (5) we have,
\[ \Rightarrow 2r - b = 5\]
\[ \Rightarrow 2\left( {\dfrac{{107}}{8}} \right) - b = 5\]
\[ \Rightarrow \left( {\dfrac{{107}}{4}} \right) - 5 = b\]
\[ \Rightarrow b = \dfrac{{87}}{4}\]
So the quotient polynomial is
$ \Rightarrow p{x^2} + qx + r = \dfrac{7}{2}{x^2} - \dfrac{{21}}{4}x + \dfrac{{107}}{8}$
And the remainder polynomial is
$ \Rightarrow ax + b = \dfrac{{ - 381}}{8}x + \dfrac{{87}}{4}$
\[ \Rightarrow \dfrac{{7{x^4} + 4{x^2} + 3x - 5}}{{2{x^2} + 3x - 2}} = \left( {\dfrac{7}{2}{x^2} - \dfrac{{21}}{4}x + \dfrac{{107}}{8}} \right)\dfrac{{\left( {\dfrac{{ - 381}}{8}x + \dfrac{{87}}{4}} \right)}}{{2{x^2} + 3x - 2}}\]
So this is the required answer.
Note: Whenever we face such types of questions the key concept we have to remember is that when we multiply the divisor polynomial by the quotient polynomial and in this add the remainder polynomial we will get the resultant polynomial, so on comparing we get some equation with unknown parameters, simply solve these equations we will get the required answer.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

