Answer
Verified
374.7k+ views
Hint: To divide an equation in algebraic expression we use a long division method. Firstly we write the polynomial in descending order then firstly we find a factor that satisfies the equation using hit and trial method. Then we will use that factor to divide the equation in algebraic expression.
Complete step-by-step solution:
To divide the equation in algebraic expression find a factor of that equation by hit and trial method and then divide the equation by that factor as follows:
1. Arrange the polynomial in descending order of both the Dividend and the divisor.
2. Divide the first term of the dividend by the first term of the divisor by finding a term which when multiplied by the first term of the divisor makes it equal to the first term of the dividend.
3. Multiply the number obtains in step 2 by the divisor and subtracts it by the dividend and brings the remaining term down.
4. Repeat step 2 and 3 till we get our remainder as zero or till we have taken all the terms down.
5. Multiply the quotient obtained and the factor we got from hit and trial method and get the equation in algebraic expression.
For example- Divide equation ${{x}^{2}}+5x+6$ in algebraic expression.
We have to divide the below equation:
${{x}^{2}}+5x+6$…..$\left( 1 \right)$
By using hit and trial method put $x=-2$ in equation (1)
$\begin{align}
& \Rightarrow {{\left( -2 \right)}^{2}}+5\times -2+6 \\
& \Rightarrow 4-10+6 \\
& \Rightarrow 0 \\
\end{align}$
So $\left( x+2 \right)$ is one of the factors now we will divide the equation (1) by $\left( x+2 \right)$ as below:
$x+2\overset{x+3}{\overline{\left){\begin{align}
& {{x}^{2}}+5x+6 \\
& \underline{{{x}^{2}}+2x} \\
& 0+3x+6 \\
& \underline{0+3x+6} \\
& 0+0+0 \\
\end{align}}\right.}}$
So we get the Quotient as $\left( x+3 \right)$
So we can divide equation ${{x}^{2}}+5x+6$ as an algebraic expression$\left( x+2 \right)\left( x+3 \right)$
Hence we have to divide the dividend that is our equation by a divisor that is one of the factors of the equation to divide the equation in algebraic expression
Note: Algebraic expression is an expression which is made up of variables and constant along with algebraic operations which are addition, subtraction, multiplication and division. Algebraic equation is the equation made up of variables and constant and is equal to 0.
Complete step-by-step solution:
To divide the equation in algebraic expression find a factor of that equation by hit and trial method and then divide the equation by that factor as follows:
1. Arrange the polynomial in descending order of both the Dividend and the divisor.
2. Divide the first term of the dividend by the first term of the divisor by finding a term which when multiplied by the first term of the divisor makes it equal to the first term of the dividend.
3. Multiply the number obtains in step 2 by the divisor and subtracts it by the dividend and brings the remaining term down.
4. Repeat step 2 and 3 till we get our remainder as zero or till we have taken all the terms down.
5. Multiply the quotient obtained and the factor we got from hit and trial method and get the equation in algebraic expression.
For example- Divide equation ${{x}^{2}}+5x+6$ in algebraic expression.
We have to divide the below equation:
${{x}^{2}}+5x+6$…..$\left( 1 \right)$
By using hit and trial method put $x=-2$ in equation (1)
$\begin{align}
& \Rightarrow {{\left( -2 \right)}^{2}}+5\times -2+6 \\
& \Rightarrow 4-10+6 \\
& \Rightarrow 0 \\
\end{align}$
So $\left( x+2 \right)$ is one of the factors now we will divide the equation (1) by $\left( x+2 \right)$ as below:
$x+2\overset{x+3}{\overline{\left){\begin{align}
& {{x}^{2}}+5x+6 \\
& \underline{{{x}^{2}}+2x} \\
& 0+3x+6 \\
& \underline{0+3x+6} \\
& 0+0+0 \\
\end{align}}\right.}}$
So we get the Quotient as $\left( x+3 \right)$
So we can divide equation ${{x}^{2}}+5x+6$ as an algebraic expression$\left( x+2 \right)\left( x+3 \right)$
Hence we have to divide the dividend that is our equation by a divisor that is one of the factors of the equation to divide the equation in algebraic expression
Note: Algebraic expression is an expression which is made up of variables and constant along with algebraic operations which are addition, subtraction, multiplication and division. Algebraic equation is the equation made up of variables and constant and is equal to 0.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference Between Plant Cell and Animal Cell
In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE
Which are the Top 10 Largest Countries of the World?
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths